Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 89: 103-133, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32176524

RESUMEN

Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Reparación del ADN por Unión de Extremidades , ADN/genética , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Humanos , Modelos Moleculares , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Mol Cell ; 83(20): 3588-3590, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37863026

RESUMEN

In this issue, Joo et al.1 and Kovacs et al.2 report that the ATR kinase promotes nuclear envelope rupture through the phosphorylation of Lamin A/C, inducing processes such as cGAS-STING pathway activation, micronuclei clearance, and potentially cell death.


Asunto(s)
Membrana Nuclear , Nucleotidiltransferasas , Membrana Nuclear/metabolismo , Nucleotidiltransferasas/metabolismo , Fosforilación , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
3.
Mol Cell ; 83(23): 4424-4437.e5, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37944526

RESUMEN

Whether synthetic genomes can power life has attracted broad interest in the synthetic biology field. Here, we report de novo synthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bp yeast chromosome resulting from extensive genome streamlining and modification. We developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction. Besides the drastic sequence changes, we further manipulated the 3D structure of synIV to explore spatial gene regulation. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of synIV sheds light on higher-order architectural design of the synthetic genomes.


Asunto(s)
Núcleo Celular , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Cromosomas/genética , Genoma Fúngico , Biología Sintética/métodos
4.
Mol Cell ; 82(20): 3932-3942.e6, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130596

RESUMEN

The DNA-PKcs kinase mediates the repair of DNA double-strand breaks via classical non-homologous end joining (NHEJ). DNA-PKcs is also recruited to active replication forks, although a role for DNA-PKcs in the control of fork dynamics is unclear. Here, we identify a crucial role for DNA-PKcs in promoting fork reversal, a process that stabilizes stressed replication forks and protects genome integrity. DNA-PKcs promotes fork reversal and slowing in response to several replication stress-inducing agents in a manner independent of its role in NHEJ. Cells lacking DNA-PKcs activity show increased DNA damage during S-phase and cellular sensitivity to replication stress. Notably, prevention of fork slowing and reversal via DNA-PKcs inhibition efficiently restores chemotherapy sensitivity in BRCA2-deficient mammary tumors with acquired PARPi resistance. Together, our data uncover a new key regulator of fork reversal and show how DNA-PKcs signaling can be manipulated to alter fork dynamics and drug resistance in cancer.


Asunto(s)
Roturas del ADN de Doble Cadena , Resistencia a Antineoplásicos , Resistencia a Antineoplásicos/genética , Daño del ADN , Reparación del ADN por Unión de Extremidades , ADN/genética , Replicación del ADN , Reparación del ADN
5.
Mol Cell ; 81(13): 2778-2792.e4, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33932350

RESUMEN

DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks. We show that stalled Polε drives nascent strand resection causing fork functional collapse, averted via checkpoint-dependent phosphorylation. Polε catalytic subunit Pol2 is phosphorylated on serine 430, influencing partitioning between polymerase and exonuclease active sites. A phosphormimetic S430D change reduces exonucleolysis in vitro and counteracts fork collapse. Conversely, non-phosphorylatable pol2-S430A expression causes resection-driven stressed fork defects. Our findings reveal that checkpoint kinases switch Polε to an exonuclease-safe mode preventing nascent strand resection and stabilizing stalled replication forks. Elective partitioning suppression has implications for the diverse Polε roles in genome integrity maintenance.


Asunto(s)
ADN Polimerasa II/química , Exonucleasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Sustitución de Aminoácidos , Dominio Catalítico , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN de Hongos/biosíntesis , ADN de Hongos/química , ADN de Hongos/genética , Exonucleasas/genética , Exonucleasas/metabolismo , Mutación Missense , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
EMBO J ; 43(14): 3027-3043, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839993

RESUMEN

The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds and phosphorylated by Mec1 to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.


Asunto(s)
Recombinación Homóloga , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2/metabolismo , Quinasa de Punto de Control 2/genética , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Transducción de Señal , Fosforilación , Aberraciones Cromosómicas , Reordenamiento Génico
7.
PLoS Genet ; 20(2): e1011175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377115

RESUMEN

Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.


Asunto(s)
Meiosis , Profase Meiótica I , Animales , Masculino , Ratones , Alelos , ADN Helicasas/genética , Reparación del ADN/genética , Meiosis/genética , Profase Meiótica I/genética
8.
Cell ; 147(5): 1104-17, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22118465

RESUMEN

The TORC1 kinase signaling complex is a key determinant of cell growth that senses nutritional status and responds by coordinating diverse cellular processes including transcription, translation, and autophagy. Here, we demonstrate that TORC1 modulates the composition of plasma membrane (PM) proteins by regulating ubiquitin-mediated endocytosis. The mechanism involves the Npr1 kinase, a negative regulator of endocytosis that is itself negatively regulated by TORC1. We show that Npr1 inhibits the activity of Art1, an arrestin-like adaptor protein that promotes endocytosis by targeting the Rsp5 ubiquitin ligase to specific PM cargoes. Npr1 antagonizes Art1-mediated endocytosis via N-terminal phosphorylation, a modification that prevents Art1 association with the PM. Thus, our study adds ubiquitin ligase targeting and control of endocytosis to the known effector mechanisms of TORC1, underscoring how TORC1 coordinates ubiquitin-mediated endocytosis with protein synthesis and autophagy in order to regulate cell growth.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Membrana Celular/metabolismo , Endocitosis , Fosforilación , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/metabolismo
9.
Cell ; 144(5): 675-88, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21376231

RESUMEN

Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.


Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad Innata , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Transducción de Señal , Receptores Toll-Like/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores Toll-Like/inmunología
10.
J Biol Chem ; 300(8): 107513, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945450

RESUMEN

DNA-PKcs is a DNA damage sensor kinase with established roles in DNA double-strand break repair via nonhomologous end joining. Recent studies have revealed additional roles of DNA-PKcs in the regulation of transcription, translation, and DNA replication. However, the substrates through which DNA-PKcs regulates these processes remain largely undefined. Here, we utilized quantitative phosphoproteomics to generate a high coverage map of DNA-PKcs signaling in response to ionizing radiation and mapped its interplay with the ATM kinase. Beyond the detection of the canonical S/T-Q phosphorylation motif, we uncovered a noncanonical mode of DNA-PKcs signaling targeting S/T-ψ-D/E motifs. Sequence and structural analyses of the DNA-PKcs substrate recognition pocket revealed unique features compared to closely related phosphatidylinositol 3-kinase-related kinases that may explain its broader substrate preference. These findings expand the repertoire of DNA-PKcs and ATM substrates while establishing a novel preferential phosphorylation motif for DNA-PKcs.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Proteína Quinasa Activada por ADN , Transducción de Señal , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/química , Proteína Quinasa Activada por ADN/genética , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Fosforilación , Especificidad por Sustrato , Secuencias de Aminoácidos
11.
EMBO J ; 40(10): e104566, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33764556

RESUMEN

The Mec1/ATR kinase is crucial for genome maintenance in response to a range of genotoxic insults, but it remains unclear how it promotes context-dependent signaling and DNA repair. Using phosphoproteomic analyses, we uncovered a distinctive Mec1/ATR signaling response triggered by extensive nucleolytic processing (resection) of DNA ends. Budding yeast cells lacking Rad9, a checkpoint adaptor and an inhibitor of resection, exhibit a selective increase in Mec1-dependent phosphorylation of proteins associated with single-strand DNA (ssDNA) transactions, including the ssDNA-binding protein Rfa2, the translocase/ubiquitin ligase Uls1, and the Sgs1-Top3-Rmi1 (STR) complex that regulates homologous recombination (HR). Extensive Mec1-dependent phosphorylation of the STR complex, mostly on the Sgs1 helicase subunit, promotes an interaction between STR and the DNA repair scaffolding protein Dpb11. Fusion of Sgs1 to phosphopeptide-binding domains of Dpb11 strongly impairs HR-mediated repair, supporting a model whereby Mec1 signaling regulates STR upon hyper-resection to influence recombination outcomes. Overall, the identification of a distinct Mec1 signaling response triggered by hyper-resection highlights the multi-faceted action of this kinase in the coordination of checkpoint signaling and HR-mediated DNA repair.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN/genética , Reparación del ADN/fisiología , Recombinación Homóloga/genética , Recombinación Homóloga/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
12.
EMBO J ; 40(12): e107607, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34018207

RESUMEN

The GTPase Rab1 is a master regulator of the early secretory pathway and is critical for autophagy. Rab1 activation is controlled by its guanine nucleotide exchange factor, the multisubunit TRAPPIII complex. Here, we report the 3.7 Å cryo-EM structure of the Saccharomyces cerevisiae TRAPPIII complex bound to its substrate Rab1/Ypt1. The structure reveals the binding site for the Rab1/Ypt1 hypervariable domain, leading to a model for how the complex interacts with membranes during the activation reaction. We determined that stable membrane binding by the TRAPPIII complex is required for robust activation of Rab1/Ypt1 in vitro and in vivo, and is mediated by a conserved amphipathic α-helix within the regulatory Trs85 subunit. Our results show that the Trs85 subunit serves as a membrane anchor, via its amphipathic helix, for the entire TRAPPIII complex. These findings provide a structural understanding of Rab activation on organelle and vesicle membranes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Proteínas de Unión al GTP rab/química , Microscopía por Crioelectrón , Factores de Intercambio de Guanina Nucleótido/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/ultraestructura , Proteínas de Transporte Vesicular/ultraestructura , Proteínas de Unión al GTP rab/ultraestructura
13.
Blood ; 139(7): 1039-1051, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34767620

RESUMEN

Human telomere biology disorders (TBD)/short telomere syndromes (STS) are heterogeneous disorders caused by inherited loss-of-function mutations in telomere-associated genes. Here, we identify 3 germline heterozygous missense variants in the RPA1 gene in 4 unrelated probands presenting with short telomeres and varying clinical features of TBD/STS, including bone marrow failure, myelodysplastic syndrome, T- and B-cell lymphopenia, pulmonary fibrosis, or skin manifestations. All variants cluster to DNA-binding domain A of RPA1 protein. RPA1 is a single-strand DNA-binding protein required for DNA replication and repair and involved in telomere maintenance. We showed that RPA1E240K and RPA1V227A proteins exhibit increased binding to single-strand and telomeric DNA, implying a gain in DNA-binding function, whereas RPA1T270A has binding properties similar to wild-type protein. To study the mutational effect in a cellular system, CRISPR/Cas9 was used to knock-in the RPA1E240K mutation into healthy inducible pluripotent stem cells. This resulted in severe telomere shortening and impaired hematopoietic differentiation. Furthermore, in patients with RPA1E240K, we discovered somatic genetic rescue in hematopoietic cells due to an acquired truncating cis RPA1 mutation or a uniparental isodisomy 17p with loss of mutant allele, coinciding with stabilized blood counts. Using single-cell sequencing, the 2 somatic genetic rescue events were proven to be independently acquired in hematopoietic stem cells. In summary, we describe the first human disease caused by germline RPA1 variants in individuals with TBD/STS.


Asunto(s)
Trastornos de Fallo de la Médula Ósea/patología , Mutación con Ganancia de Función , Heterocigoto , Síndromes Mielodisplásicos/patología , Proteína de Replicación A/genética , Acortamiento del Telómero , Telómero/genética , Adolescente , Adulto , Trastornos de Fallo de la Médula Ósea/etiología , Trastornos de Fallo de la Médula Ósea/metabolismo , Diferenciación Celular , Niño , Femenino , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/etiología , Síndromes Mielodisplásicos/metabolismo , Adulto Joven
14.
Am J Public Health ; 114(6): 642-650, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38574318

RESUMEN

Objectives. To examine sudden and unexpected or trauma-related deaths that occurred in the presence of law enforcement in Johnson County, Iowa, between 2011 and 2020. Methods. We identified deaths in the presence of law enforcement using definitions from the National Association of Medical Examiners. We obtained data, including demographics, cause and manner of death, toxicology results, and circumstances and location of event leading to death, from comprehensive medical examiner investigative reports. Results. There were 165 deaths that occurred in the presence of law enforcement: 114 were from a known disease, and 51 were either trauma related or the sudden, unexpected initial presentation of a previously unrecognized disease. Three deaths occurred in the context of physical restraint by law enforcement. Suicide was the leading manner of death among trauma-related deaths; the means of suicide was predictable based on in-custody (hanging) or precustody (firearm) circumstances. Conclusions. Our findings highlight the potential role of medical examiners and coroners in improving completeness of data on reporting death in the presence of law enforcement to public health agencies. (Am J Public Health. 2024;114(6):642-650. https://doi.org/10.2105/AJPH.2024.307616).


Asunto(s)
Causas de Muerte , Aplicación de la Ley , Humanos , Iowa/epidemiología , Masculino , Adulto , Persona de Mediana Edad , Femenino , Anciano , Adolescente , Suicidio/estadística & datos numéricos , Adulto Joven , Niño , Médicos Forenses , Preescolar
15.
BMC Microbiol ; 23(1): 206, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37528343

RESUMEN

BACKGROUND: The microbiome of the human gut serves a role in a number of physiological processes, but can be altered through effects of age, diet, and disturbances such as antibiotics. Several studies have demonstrated that commonly used antibiotics can have sustained impacts on the diversity and the composition of the gut microbiome. The impact of the two most overused antibiotics, azithromycin, and amoxicillin, in the human microbiome has not been thoroughly described. In this study, we recruited a group of individuals and unrelated controls to decipher the effects of the commonly used antibiotics amoxicillin and azithromycin on their gut microbiomes. RESULTS: We characterized the gut microbiomes by metagenomic sequencing followed by characterization of the resulting microbial communities. We found that there were clear and sustained effects of the antibiotics on the gut microbial community with significant alterations in the representations of Bifidobacterium species in response to azithromycin (macrolide antibiotic). These results were supported by significant increases identified in putative antibiotic resistance genes associated with macrolide resistance. Importantly, we did not identify these trends in the unrelated control individuals. There were no significant changes observed in other members of the microbial community. CONCLUSIONS: As we continue to focus on the role that the gut microbiome plays and how disturbances induced by antibiotics might affect our overall health, elucidating members of the community most affected by their use is of critical importance to understanding the impacts of common antibiotics on those who take them. Clinical Trial Registration Number NCT05169255. This trial was retrospectively registered on 23-12-2021.


Asunto(s)
Amoxicilina , Antibacterianos , Humanos , Antibacterianos/farmacología , Amoxicilina/farmacología , Azitromicina/farmacología , Metagenómica , Macrólidos/farmacología , Farmacorresistencia Bacteriana
16.
EMBO Rep ; 22(2): e51121, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33491328

RESUMEN

Phosphorylation is one of the most dynamic and widespread post-translational modifications regulating virtually every aspect of eukaryotic cell biology. Here, we assemble a dataset from 75 independent phosphoproteomic experiments performed in our laboratory using Saccharomyces cerevisiae. We report 30,902 phosphosites identified from cells cultured in a range of DNA damage conditions and/or arrested in distinct cell cycle stages. To generate a comprehensive resource for the budding yeast community, we aggregate our dataset with the Saccharomyces Genome Database and another recently published study, resulting in over 46,000 budding yeast phosphosites. With the goal of enhancing the identification of functional phosphorylation events, we perform computational positioning of phosphorylation sites on available 3D protein structures and systematically identify events predicted to regulate protein complex architecture. Results reveal hundreds of phosphorylation sites mapping to or near protein interaction interfaces, many of which result in steric or electrostatic "clashes" predicted to disrupt the interaction. With the advancement of Cryo-EM and the increasing number of available structures, our approach should help drive the functional and spatial exploration of the phosphoproteome.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Fosforilación , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
17.
Cell ; 133(7): 1277-89, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18585360

RESUMEN

We describe the comprehensive characterization of homeodomain DNA-binding specificities from a metazoan genome. The analysis of all 84 independent homeodomains from D. melanogaster reveals the breadth of DNA sequences that can be specified by this recognition motif. The majority of these factors can be organized into 11 different specificity groups, where the preferred recognition sequence between these groups can differ at up to four of the six core recognition positions. Analysis of the recognition motifs within these groups led to a catalog of common specificity determinants that may cooperate or compete to define the binding site preference. With these recognition principles, a homeodomain can be reengineered to create factors where its specificity is altered at the majority of recognition positions. This resource also allows prediction of homeodomain specificities from other organisms, which is demonstrated by the prediction and analysis of human homeodomain specificities.


Asunto(s)
ADN/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/química , Proteínas de Homeodominio/química , Secuencia de Aminoácidos , Animales , Bacterias/química , Bacterias/genética , Secuencia de Bases , ADN/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma de los Insectos , Proteínas de Homeodominio/genética , Humanos , Modelos Moleculares , Filogenia , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos
18.
J Esthet Restor Dent ; 35(4): 625-631, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36852631

RESUMEN

OBJECIVE: The peri-implant soft tissue phenotype plays a role in the long-term success of dental implants, thus, creating the need for the application of different techniques for the management of its adjacent soft tissues. The aim of this case series was to describe and evaluate the clinical outcomes of the microsurgical roll-in-envelope flap (RIE) approach, in comparison with a more commonly used method for manipulation of the peri-implant soft tissues, namely the holding-suture flap (HS) technique. MATERIALS AND METHODS: 10 posterior dental implants in 10 healthy individuals were selected and randomly assigned treatment by each of the mentioned groups relative to the flap design. Mucosal thickness was measured at the time of the surgery and at 6 and 12 weeks, serving as the main outcome. RESULTS: The healing was uneventful at all sites without any patient drop-outs. The comparison of two groups revealed a three-fold reduction in the mucosal thickness in HS group compared to RIE. CONCLUSIONS: In presence of sufficient periimplant supporting tissues and when indicated, the RIE flap seems to yield superior outcomes reducing pain/discomfort compared to connective tissue grafts.


Asunto(s)
Implantes Dentales , Encía/cirugía , Colgajos Quirúrgicos/cirugía , Implantación Dental Endoósea/métodos , Técnicas de Sutura
19.
Nucleic Acids Res ; 48(11): 6382-6402, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32383734

RESUMEN

The Cys2His2 zinc finger is the most common DNA-binding domain expanding in metazoans since the fungi human split. A proposed catalyst for this expansion is an arms race to silence transposable elements yet it remains poorly understood how this domain is able to evolve the required specificities. Likewise, models of its DNA binding specificity remain error prone due to a lack of understanding of how adjacent fingers influence each other's binding specificity. Here, we use a synthetic approach to exhaustively investigate binding geometry, one of the dominant influences on adjacent finger function. By screening over 28 billion protein-DNA interactions in various geometric contexts we find the plasticity of the most common natural geometry enables more functional amino acid combinations across all targets. Further, residues that define this geometry are enriched in genomes where zinc fingers are prevalent and specificity transitions would be limited in alternative geometries. Finally, these results demonstrate an exhaustive synthetic screen can produce an accurate model of domain function while providing mechanistic insight that may have assisted in the domains expansion.


Asunto(s)
Modelos Moleculares , Dominios Proteicos/fisiología , Dedos de Zinc/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN/síntesis química , ADN/genética , ADN/metabolismo , Aprendizaje Profundo , Humanos , Enlace de Hidrógeno , Dominios Proteicos/genética , Reproducibilidad de los Resultados , Especificidad por Sustrato/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc/genética
20.
Proc Natl Acad Sci U S A ; 116(47): 23518-23526, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31690664

RESUMEN

Posttranslational protein modification by ubiquitin (Ub) is a central eukaryotic mechanism that regulates a plethora of physiological processes. Recent studies unveiled an unconventional type of ubiquitination mediated by the SidE family of Legionella pneumophila effectors, such as SdeA, that catalyzes the conjugation of Ub to a serine residue of target proteins via a phosphoribosyl linker (hence named PR-ubiquitination). Comparable to the deubiquitinases in the canonical ubiquitination pathway, here we show that 2 paralogous Legionella effectors, Lpg2154 (DupA; deubiquitinase for PR-ubiquitination) and Lpg2509 (DupB), reverse PR-ubiquitination by specific removal of phosphoribosyl-Ub from substrates. Both DupA and DupB are fully capable of rescuing the Golgi fragmentation phenotype caused by exogenous expression of SdeA in mammalian cells. We further show that deletion of these 2 genes results in significant accumulation of PR-ubiquitinated species in host cells infected with Legionella In addition, we have identified a list of specific PR-ubiquitinated host targets and show that DupA and DupB play a role in modulating the association of PR-ubiquitinated host targets with Legionella-containing vacuoles. Together, our data establish a complete PR-ubiquitination and deubiquitination cycle and demonstrate the intricate control that Legionella has over this unusual Ub-dependent posttranslational modification.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Legionella pneumophila/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , ADP-Ribosilación , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Ubiquitina , Ubiquitinación , Vacuolas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA