Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834475

RESUMEN

Neuroblastoma (NB) is a childhood cancer, commonly treated with drugs, such as etoposide (ETO), whose efficacy is limited by the onset of resistance. Here, aiming at identifying new treatments for chemo-resistant NB, the effects of two synthesized imidazo-pyrazoles (IMPs) (4G and 4I) were investigated on ETO-sensitive (HTLA-230) and ETO-resistant (HTLA-ER) NB cells, detecting 4I as the more promising compound, that demonstrated IC50 values lower than those of ETO on HTLA ER. Therefore, to further improve the activity of 4I, we developed 4I-loaded palmitic acid (PA) and polystyrene-based (P5) cationic nanoparticles (P5PA-4I NPs) with high drug loading (21%) and encapsulation efficiency (97%), by a single oil-in-water emulsification technique. Biocompatible PA was adopted as an emulsion stabilizer, while synthesized P5 acted as an encapsulating agent, solubilizer and hydrophilic-lipophilic balance (HLB) improver. Optic microscopy and cytofluorimetric analyses were performed to investigate the micromorphology, size and complexity distributions of P5PA-4I NPs, which were also structurally characterized by chemometric-assisted Fourier transform infrared spectroscopy (FTIR). Potentiometric titrations allowed us to estimate the milliequivalents of PA and basic nitrogen atoms present in NPs. P5PA-4I NPs afforded dispersions in water with excellent buffer capacity, essential to escape lysosomal degradation and promote long residence time inside cells. They were chemically stable in an aqueous medium for at least 40 days, while in dynamic light scattering (DLS) analyses, P5PA-4I showed a mean hydrodynamic diameter of 541 nm, small polydispersity (0.194), and low positive zeta potentials (+8.39 mV), assuring low haemolytic toxicity. Biological experiments on NB cells, demonstrated that P5PA-4I NPs induced ROS-dependent cytotoxic effects significantly higher than those of pristine 4I, showing a major efficacy compared to ETO in reducing cell viability in HTLA-ER cells. Collectively, this 4I-based nano-formulation could represent a new promising macromolecular platform to develop a new delivery system able to increase the cytotoxicity of the anticancer drugs.


Asunto(s)
Antineoplásicos , Nanopartículas , Neuroblastoma , Humanos , Niño , Portadores de Fármacos/química , Ácido Palmítico/farmacología , Poliestirenos , Etopósido , Antineoplásicos/farmacología , Neuroblastoma/tratamiento farmacológico , Nanopartículas/química , Agua
2.
Int J Mol Sci ; 23(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35682787

RESUMEN

In the last few years, antibiotic resistance and, analogously, anticancer drug resistance have increased considerably, becoming one of the main public health problems. For this reason, it is crucial to find therapeutic strategies able to counteract the onset of multi-drug resistance (MDR). In this review, a critical overview of the innovative tools available today to fight MDR is reported. In this direction, the use of membrane-disruptive peptides/peptidomimetics (MDPs), such as antimicrobial peptides (AMPs), has received particular attention, due to their high selectivity and to their limited side effects. Moreover, similarities between bacteria and cancer cells are herein reported and the hypothesis of the possible use of AMPs also in anticancer therapies is discussed. However, it is important to take into account the limitations that could negatively impact clinical application and, in particular, the need for an efficient delivery system. In this regard, the use of nanoparticles (NPs) is proposed as a potential strategy to improve therapy; moreover, among polymeric NPs, cationic ones are emerging as promising tools able to fight the onset of MDR both in bacteria and in cancer cells.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Nanopartículas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Péptidos Antimicrobianos , Bacterias , Resistencia a Múltiples Medicamentos
3.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232676

RESUMEN

Intraocular pressure (IOP) is considered an important modifiable risk factor for glaucoma, which is known as the second leading cause of blindness worldwide. However, lowering the IOP is not always sufficient to preserve vision due to other non-IOP-dependent mechanisms being involved. To improve outcomes, adjunctive therapies with IOP-independent targets are required. To date, no studies have shown the effect of citicoline on the trabecular meshwork (TM), even though it is known to possess neuroprotective/enhancement properties and multifactorial mechanisms of action. Given that reactive oxygen species seem to be involved in glaucomatous cascade, in this present study, an advanced millifluidic in vitro model was used to evaluate if citicoline could exert a valid TM protection against oxidative stress. To this end, the cellular behavior, in terms of viability, apoptosis, mitochondrial state, senescence and pro-inflammatory cytokines, on 3D human TM cells, treated either with H2O2 alone or cotreated with citicoline, was analyzed. Our preliminary in vitro results suggest a counteracting effect of citicoline eye drops against oxidative stress on TM cells, though further studies are necessary to explore citicoline's potential as a TM-target therapy.


Asunto(s)
Glaucoma , Malla Trabecular , Citidina Difosfato Colina/farmacología , Citocinas/farmacología , Glaucoma/tratamiento farmacológico , Humanos , Peróxido de Hidrógeno/farmacología , Presión Intraocular , Soluciones Oftálmicas/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno/farmacología
4.
Ann Neurol ; 75(4): 602-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24591104

RESUMEN

Cyclic adenosine monophosphate (cAMP) regulates long-term potentiation (LTP) and ameliorates memory in healthy and diseased brain. Increasing evidence shows that, under physiological conditions, low concentrations of amyloid ß (Aß) are necessary for LTP expression and memory formation. Here, we report that cAMP controls amyloid precursor protein (APP) translation and Aß levels, and that the modulatory effects of cAMP on LTP occur through the stimulation of APP synthesis and Aß production.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , AMP Cíclico/farmacología , Memoria/fisiología , Neuronas/efectos de los fármacos , Precursor de Proteína beta-Amiloide/deficiencia , Precursor de Proteína beta-Amiloide/genética , Animales , Células Cultivadas , Colforsina/farmacología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Humanos , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
5.
Molecules ; 19(7): 9307-17, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24991761

RESUMEN

Alzheimer's disease (AD) is a progressive and age-related neurodegenerative disorder affecting brain cells and is the most common form of "dementia", because of the cognitive detriment which takes place. Neuronal disruption represents its major feature, due to the cytosolic accumulation of amyloid ß-peptide (Aß) which leads to senile plaques formation and intracellular neurofibrillary tangles. Many studies have focused on the design and therapeutic use of new molecules able to inhibit Aß aggregation. In this context, we evaluated the ability of two recently synthesized series of N-alkyl carbazole derivatives to increase the Aß soluble forms, through molecular docking simulations and in vitro experiments. Our data evidenced that two carbazole derivatives, the most active, adopt distinct binding modes involving key residues for Aß fibrillization. They exhibit a good interfering activity on Aß aggregation in mouse (N2a) cells, stably expressing wild-type human amyloid precursor protein (APP) 695. These preliminary results are promising and we are confident that the N-alkyl carbazole derivatives may encourage next future studies needed for enlarging the knowledge about the AD disease approach.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Carbazoles/farmacología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Animales , Carbazoles/química , Línea Celular , Medios de Cultivo Condicionados , Evaluación Preclínica de Medicamentos , Humanos , Ratones , Simulación del Acoplamiento Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas/prevención & control , Estabilidad Proteica , Solubilidad
6.
IUBMB Life ; 65(2): 127-33, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23297063

RESUMEN

Besides playing a pathogenic role in Alzheimer disease, amyloid-beta peptides are normally produced in low amounts in the brain, and several lines of evidence suggest that they can modulate synaptic plasticity and memory. As cyclic adenosine monophosphate (cAMP) is known to be involved in the same processes and the blockade of its degradation by phosphodiesterase 4 inhibitors has consistently shown beneficial effects on cognition, we investigated the possible correlation between this second messenger and Aß peptides in neuronal N2a cells overexpressing the amyloid-ß precursor protein (APP). We herein report that the elevation of endogenous cAMP by rolipram increased APP protein expression and both its amyloidogenic and nonamyloidogenic processing. The effects of rolipram were reproduced by both the cAMP membrane-permeant analog 8Br-cAMP and the forskolin-induced activation of adenylyl cyclase but were not affected by the PKA inhibitor H-89. Our results demonstrate that, in neuronal cells, APP metabolism is physiologically modulated by cAMP and suggest that this might represent an additional mechanism through which the second messenger could influence memory functions.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , AMP Cíclico/fisiología , Procesamiento Proteico-Postraduccional , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Adenilil Ciclasas/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Células Cultivadas , Colforsina/farmacología , Activadores de Enzimas/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Inhibidores de Fosfodiesterasa 4/farmacología , Proteolisis , Rolipram/farmacología , Sistemas de Mensajero Secundario
7.
Front Oncol ; 13: 1208140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538108

RESUMEN

Introduction: The latest GLOBOCAN 2021 reports that colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Most CRC cases are sporadic and associated with several risk factors, including lifestyle habits, gut dysbiosis, chronic inflammation, and oxidative stress. Aim: To summarize the biology of CRC and discuss current therapeutic interventions designed to counteract CRC development and to overcome chemoresistance. Methods: Literature searches were conducted using PubMed and focusing the attention on the keywords such as "Current treatment of CRC" or "chemoresistance and CRC" or "oxidative stress and CRC" or "novel drug delivery approaches in cancer" or "immunotherapy in CRC" or "gut microbiota in CRC" or "systematic review and meta-analysis of randomized controlled trials" or "CSCs and CRC". The citations included in the search ranged from September 1988 to December 2022. An additional search was carried out using the clinical trial database. Results: Rounds of adjuvant therapies, including radiotherapy, chemotherapy, and immunotherapy are commonly planned to reduce cancer recurrence after surgery (stage II and stage III CRC patients) and to improve overall survival (stage IV). 5-fluorouracil-based chemotherapy in combination with other cytotoxic drugs, is the mainstay to treat CRC. However, the onset of the inherent or acquired resistance and the presence of chemoresistant cancer stem cells drastically reduce the efficacy. On the other hand, the genetic-molecular heterogeneity of CRC often precludes also the efficacy of new therapeutic approaches such as immunotherapies. Therefore, the CRC complexity made of natural or acquired multidrug resistance has made it necessary the search for new druggable targets and new delivery systems. Conclusion: Further knowledge of the underlying CRC mechanisms and a comprehensive overview of current therapeutic opportunities can provide the basis for identifying pharmacological and biological barriers that render therapies ineffective and for identifying new potential biomarkers and therapeutic targets for advanced and aggressive CRC.

8.
Pharmaceutics ; 15(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37896185

RESUMEN

Aiming at developing a dermal formulation against melanoma, the synthesized imidazo-pyrazoles 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (3-methoxy-4-phenoxy-benzylidene)-hydrazide (4G) and 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (4-benzyloxy-3-methoxy-benzylidene)-hydrazide (4I) were screened on patient-isolated melanoma cells (MEOV NT) and on Vemurafenib (PLX4032)-resistant (MEOV PLX-R) ones. Since 4I on MEOV PLX-R cells was 1.4-fold more effective than PLX, a hydrogel formulation containing 4I (R4HG-4I) was prepared in parallel with an empty R4-based hydrogel (R4HG) using a synthesized antibacterial resin (R4) as gelling agent. Thanks to its high hydrophilicity, porosity (85%), and excellent swelling capability (552%), R4 allowed to achieve R4HG and R4HG-4I with high equilibrium degree of swelling (EDS) and equilibrium water content (EWC). Chemometric-assisted ATR-FTIR analyses confirmed the chemical structure of swollen and fully dried (R4HG-D and R4HG-4I-D) hydrogels. The morphology of R4HG-D and R4HG-4I-D was examined by optical microscopy and SEM, while UV-vis analyses were carried out to obtain the drug loading (DL%) and the encapsulation efficiency (EE%) of R4HG-4I. Potentiometric titrations were performed to determine the equivalents of NH3+ in both R4HG and R4HG-4I. The swelling and water release profiles of both materials and related kinetics were assessed by equilibrium swelling rate and water loss studies, respectively, while their biodegradability over time was assessed by in vitro degradation experiments determining their mass loss. Rheological experiments established that both R4HG and R4HG-4I are shear-thinning Bingham pseudoplastic fluids with low yield stress, thus assuring easy spreadability in a future topical application. Release studies evidenced a sustained and quantitative release of 4I governed mainly by diffusion. Upon favorable results from further experiments in a more realistic 3D model of melanoma, R4HG-4I could represent a starting point to develop new topical therapeutic options to adjuvate the treatments of melanoma cells also when resistant to currently available drugs.

9.
Antioxidants (Basel) ; 13(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275623

RESUMEN

Neuroblastoma (NB) is a paediatric cancer with noteworthy heterogeneity ranging from spontaneous regression to high-risk forms that are characterised by cancer relapse and the acquisition of drug resistance. The most-used anticancer drugs exert their cytotoxic effect by inducing oxidative stress, and long-term therapy has been demonstrated to cause chemoresistance by enhancing the antioxidant response of NB cells. Taking advantage of an in vitro model of multidrug-resistant (MDR) NB cells, characterised by high levels of glutathione (GSH), the overexpression of the oncoprotein BMI-1, and the presence of a mutant P53 protein, we investigated a new potential strategy to fight chemoresistance. Our results show that PTC596, an inhibitor of BMI-1, exerted a high cytotoxic effect on MDR NB cells, while PRIMA-1MET, a compound able to reactivate mutant P53, had no effect on the viability of MDR cells. Furthermore, both PTC596 and PRIMA-1MET markedly reduced the expression of epithelial-mesenchymal transition proteins and limited the clonogenic potential and the cancer stemness of MDR cells. Of particular interest is the observation that PTC596, alone or in combination with PRIMA-1MET and etoposide, significantly reduced GSH levels, increased peroxide production, stimulated lipid peroxidation, and induced ferroptosis. Therefore, these findings suggest that PTC596, by inhibiting BMI-1 and triggering ferroptosis, could be a promising approach to fight chemoresistance.

10.
Front Oncol ; 13: 1210130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534247

RESUMEN

Background: Malignant melanoma is the most lethal form of skin cancer which shows BRAF mutation in 50% of patients. In this context, the identification of BRAFV600E mutation led to the development of specific inhibitors like PLX4032. Nevertheless, although its initial success, its clinical efficacy is reduced after six-months of therapy leading to cancer relapse due to the onset of drug resistance. Therefore, investigating the mechanisms underlying PLX4032 resistance is fundamental to improve therapy efficacy. In this context, several models of PLX4032 resistance have been developed, but the discrepancy between in vitro and in vivo results often limits their clinical translation. Methods: The herein reported model has been realized by treating with PLX4032, for six months, patient-derived BRAF-mutated melanoma cells in order to obtain a reliable model of acquired PLX4032 resistance that could be predictive of patient's treatment responses. Metabolic analyses were performed by evaluating glucose consumption, ATP synthesis, oxygen consumption rate, P/O ratio, ATP/AMP ratio, lactate release, lactate dehydrogenase activity, NAD+/NADH ratio and pyruvate dehydrogenase activity in parental and drug resistant melanoma cells. The intracellular oxidative state was analyzed in terms of reactive oxygen species production, glutathione levels and NADPH/NADP+ ratio. In addition, a principal component analysis was conducted in order to identify the variables responsible for the acquisition of targeted therapy resistance. Results: Collectively, our results demonstrate, for the first time in patient-derived melanoma cells, that the rewiring of oxidative phosphorylation and the maintenance of pyruvate dehydrogenase activity and of high glutathione levels contribute to trigger the onset of PLX4032 resistance. Conclusion: Therefore, it is possible to hypothesize that inhibitors of glutathione biosynthesis and/or pyruvate dehydrogenase activity could be used in combination with PLX4032 to overcome drug resistance of BRAF-mutated melanoma patients. However, the identification of new adjuvant targets related to drug-induced metabolic reprogramming could be crucial to counteract the failure of targeted therapy in metastatic melanoma.

11.
IUBMB Life ; 64(12): 931-5, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23124820

RESUMEN

A large amount of evidence suggests a pathogenic link between cholesterol homeostasis dysregulation and Alzheimer's disease (AD). In cell culture systems, the production of amyloid-ß (Aß) is modulated by cholesterol, and studies on animal models have consistently demonstrated that hypercholesterolemia is associated with an increased deposition of cerebral Aß peptides. Consequently, a number of epidemiological studies have examined the effects of cholesterol-lowering drugs (i.e., statins) in the prevention and the treatment of AD. However, while retrospective studies suggested a potential benefit of statin therapy, clinical trials produced inconsistent results. Here, we summarize the main findings from in vitro and in vivo research where the correlation between cholesterol and the neurodegenerative disorder was investigated. Recognition of this correlation could be an important step forward for our understanding of AD pathogenesis and, possibly, for the development of new therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer/sangre , Péptidos beta-Amiloides/metabolismo , Corteza Cerebral/metabolismo , Colesterol/sangre , Hipercolesterolemia/sangre , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Anticolesterolemiantes/farmacología , Anticolesterolemiantes/uso terapéutico , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hipercolesterolemia/complicaciones , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/patología , Estudios Retrospectivos
12.
Antioxidants (Basel) ; 11(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35624891

RESUMEN

The modulation of oxidative stress is essential for the maintenance of redox homeostasis in healthy and cancer cells [...].

13.
Pharmaceutics ; 14(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35890294

RESUMEN

Glioblastoma (GBM) is the most common adult brain tumor and, although many efforts have been made to find valid therapies, the onset of resistance is the main cause of recurrence. Therefore, it is crucial to identify and target the molecular mediators responsible for GBM malignancy. In this context, the use of Src inhibitors such as SI306 (C1) and its prodrug (C2) showed promising results, suggesting that SI306 could be the lead compound useful to derivate new anti-GBM drugs. Therefore, a new prodrug of SI306 (C3) was synthesized and tested on CAS-1 and U87 human GBM cells by comparing its effect to that of C1 and C2. All compounds were more effective on CAS-1 than U87 cells, while C2 was the most active on both cell lines. Moreover, the anti-survival effect was associated with a reduction in the expression of epidermal growth factor receptor (EGFR)WT and EGFR-vIII in U87 and CAS-1 cells, respectively. Collectively, our findings demonstrate that all tested compounds are able to counteract GBM survival, further supporting the role of SI306 as progenitor of promising new drugs to treat malignant GBM.

14.
Antioxidants (Basel) ; 11(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36009331

RESUMEN

Alterations of redox homeostasis leads to a condition of resilience known as hormesis that is due to the activation of redox-sensitive pathways stimulating cell proliferation, growth, differentiation, and angiogenesis. Instead, supraphysiological production of reactive oxygen species (ROS) exceeds antioxidant defence and leads to oxidative distress. This condition induces damage to biomolecules and is responsible or co-responsible for the onset of several chronic pathologies. Thus, a dietary antioxidant supplementation has been proposed in order to prevent aging, cardiovascular and degenerative diseases as well as carcinogenesis. However, this approach has failed to demonstrate efficacy, often leading to harmful side effects, in particular in patients affected by cancer. In this latter case, an approach based on endogenous antioxidant depletion, leading to ROS overproduction, has shown an interesting potential for enhancing susceptibility of patients to anticancer therapies. Therefore, a deep investigation of molecular pathways involved in redox balance is crucial in order to identify new molecular targets useful for the development of more effective therapeutic approaches. The review herein provides an overview of the pathophysiological role of ROS and focuses the attention on positive and negative aspects of antioxidant modulation with the intent to find new insights for a successful clinical application.

15.
Comput Struct Biotechnol J ; 20: 4437-4445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051886

RESUMEN

High-Risk neuroblastoma (NB) survival rate is still <50%, despite treatments being more and more aggressive. The biggest hurdle liable to cancer therapy failure is the drug resistance by tumor cells that is likely due to the intra-tumor heterogeneity (ITH). To investigate the link between ITH and therapy resistance in NB, we performed a single cell RNA sequencing (scRNAseq) of etoposide and cisplatin resistant NB and their parental cells. Our analysis showed a clear separation of resistant and parental cells for both conditions by identifying 8 distinct tumor clusters in etoposide-resistant/parental and 7 in cisplatin-resistant/parental cells. We discovered that drug resistance can affect NB cell identities; highlighting the bi-directional ability of adrenergic-to-mesenchymal transition of NB cells. The biological processes driving the identified resistant cell subpopulations revealed genes such as (BARD1, BRCA1, PARP1, HISTH1 axis, members of RPL family), suggesting a potential drug resistance due to the acquisition of DNA repair mechanisms and to the modification of the drug targets. Deconvolution analysis of bulk RNAseq data from 498 tumors with cell subpopulation signatures showed that the transcriptional heterogeneity of our cellular models reflected the ITH of NB tumors and allowed the identification of clusters associated with worse/better survival. Our study demonstrates the distinct cell populations characterized by genes involved in different biological processes can have a role in NB drug treatment failure. These findings evidence the importance of ITH in NB drug resistance studies and the chance that scRNA-seq analysis offers in the identification of genes and pathways liable for drug resistance.

16.
Nanomaterials (Basel) ; 11(4)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920180

RESUMEN

Drug resistance is a multifactorial phenomenon that limits the action of antibiotics and chemotherapeutics. Therefore, it is essential to develop new therapeutic strategies capable of inducing cytotoxic effects circumventing chemoresistance. In this regard, the employment of natural and synthetic cationic peptides and polymers has given satisfactory results both in microbiology, as antibacterial agents, but also in the oncological field, resulting in effective treatment against several tumors, including neuroblastoma (NB). To this end, two polystyrene-based copolymers (P5, P7), containing primary ammonium groups, were herein synthetized and tested on etoposide-sensitive (HTLA-230) and etoposide-resistant (HTLA-ER) NB cells. Both copolymers were water-soluble and showed a positive surface charge due to nitrogen atoms, which resulted in protonation in the whole physiological pH range. Furthermore, P5 and P7 exhibited stability in solution, excellent buffer capacity, and nanosized particles, and they were able to reduce NB cell viability in a concentration-dependent way. Interestingly, a significant increase in reactive oxygen species (ROS) production was observed in both NB cell populations treated with P5 or P7, establishing for both copolymers an unequivocal correlation between cytotoxicity and ROS generation. Therefore, P5 and P7 could be promising template macromolecules for the development of new chemotherapeutic agents able to fight NB chemoresistance.

17.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806321

RESUMEN

All-trans-retinoic acid (ATRA) represents the first-choice treatment for several skin diseases, including epithelial skin cancer and acne. However, ATRA's cutaneous side effects, like redness and peeling, and its high instability limit its efficacy. To address these drawbacks and to improve ATRA solubilization, we prepared ATRA-loaded micelles (ATRA-TPGSs), by its encapsulation in D-α-tocopheryl-polyethylene-glycol-succinate (TPGS). First, to explore the feasibility of the project, a solubility study based on the equilibrium method was performed; then, six ATRA-TPGS formulations were prepared by the solvent-casting method using different TPGS amounts. ATRA-TPGSs showed small sizes (11-20 nm), low polydispersity, slightly negative zeta potential, and proved good encapsulation efficiency, confirmed by a chemometric-assisted Fourier transform infrared spectroscopy (FTIR) investigation. ATRA-TPGS stability was also investigated to choose the most stable formulation. Using Carbopol® 980 as gelling agent, ATRA-TPGS-loaded gels were obtained and analyzed for their rheological profiles. Ex vivo release studies from ATRA-TPGSs were performed by Franz cells, demonstrating a permeation after 24 h of 22 ± 4 µ cm-2. ATRA-TPGSs showed enhanced cytotoxic effects on melanoma cells, suggesting that these formulations may represent a valid alternative to improve patient compliance and to achieve more efficacious therapeutic outcomes.

18.
Antioxidants (Basel) ; 10(5)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924765

RESUMEN

Cancer stem cells (CSCs) are a limited cell population inside a tumor bulk characterized by high levels of glutathione (GSH), the most important antioxidant thiol of which cysteine is the limiting amino acid for GSH biosynthesis. In fact, CSCs over-express xCT, a cystine transporter stabilized on cell membrane through interaction with CD44, a stemness marker whose expression is modulated by protein kinase Cα (PKCα). Since many chemotherapeutic drugs, such as Etoposide, exert their cytotoxic action by increasing reactive oxygen species (ROS) production, the presence of high antioxidant defenses confers to CSCs a crucial role in chemoresistance. In this study, Etoposide-sensitive and -resistant neuroblastoma CSCs were chronically treated with Etoposide, given alone or in combination with Sulfasalazine (SSZ) or with an inhibitor of PKCα (C2-4), which target xCT directly or indirectly, respectively. Both combined approaches are able to sensitize CSCs to Etoposide by decreasing intracellular GSH levels, inducing a metabolic switch from OXPHOS to aerobic glycolysis, down-regulating glutathione-peroxidase-4 activity and stimulating lipid peroxidation, thus leading to ferroptosis. Our results suggest, for the first time, that PKCα inhibition inducing ferroptosis might be a useful strategy with which to fight CSC chemoresistance.

19.
J Pers Med ; 11(2)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562297

RESUMEN

Neuroblastoma (NB) accounts for about 8-10% of pediatric cancers, and the main causes of death are the presence of metastases and the acquisition of chemoresistance. Metastatic NB is characterized by MYCN amplification that correlates with changes in the expression of miRNAs, which are small non-coding RNA sequences, playing a crucial role in NB development and chemoresistance. In the present study, miRNA expression was analyzed in two human MYCN-amplified NB cell lines, one sensitive (HTLA-230) and one resistant to Etoposide (ER-HTLA), by microarray and RT-qPCR techniques. These analyses showed that miRNA-15a, -16-1, -19b, -218, and -338 were down-regulated in ER-HTLA cells. In order to validate the presence of this down-regulation in vivo, the expression of these miRNAs was analyzed in primary tumors, metastases, and bone marrow of therapy responder and non-responder pediatric patients. Principal component analysis data showed that the expression of miRNA-19b, -218, and -338 influenced metastases, and that the expression levels of all miRNAs analyzed were higher in therapy responders in respect to non-responders. Collectively, these findings suggest that these miRNAs might be involved in the regulation of the drug response, and could be employed for therapeutic purposes.

20.
Antioxidants (Basel) ; 9(8)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759749

RESUMEN

Oxidative stress (OS), triggered by overproduction of reactive oxygen and nitrogen species, is the main mechanism responsible for several human diseases. The available one-target drugs often face such illnesses, by softening symptoms without eradicating the cause. Differently, natural polyphenols from fruits and vegetables possess multi-target abilities for counteracting OS, thus representing promising therapeutic alternatives and adjuvants. Although in several in vitro experiments, ellagitannins (ETs), ellagic acid (EA), and its metabolites urolithins (UROs) have shown similar great potential for the treatment of OS-mediated human diseases, only UROs have demonstrated in vivo the ability to reach tissues to a greater extent, thus appearing as the main molecules responsible for beneficial activities. Unfortunately, UROs production depends on individual metabotypes, and the consequent extreme variability limits their potentiality as novel therapeutics, as well as dietary assumption of EA, EA-enriched functional foods, and food supplements. This review focuses on the pathophysiology of OS; on EA and UROs chemical features and on the mechanisms of their antioxidant activity. A discussion on the clinical applicability of the debated UROs in place of EA and on the effectiveness of EA-enriched products is also included.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA