Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(10): e2214561120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36853940

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped positive stranded RNA virus which has caused the recent deadly pandemic called COVID-19. The SARS-CoV-2 virion is coated with a heavily glycosylated Spike glycoprotein which is responsible for attachment and entry into target cells. One, as yet unexploited strategy for preventing SARS-CoV-2 infections, is the targeting of the glycans on Spike. Lectins are carbohydrate-binding proteins produced by plants, algae, and cyanobacteria. Some lectins can neutralize enveloped viruses displaying external glycoproteins, offering an alternative therapeutic approach for the prevention of infection with virulent ß-coronaviruses, such as SARS-CoV-2. Here we show that the cyanobacterial lectin cyanovirin-N (CV-N) can selectively target SARS-CoV-2 Spike oligosaccharides and inhibit SARS-CoV-2 infection in vitro and in vivo. CV-N neutralizes Delta and Omicron variants in vitro better than earlier circulating viral variants. CV-N binds selectively to Spike with a Kd as low as 15 nM and a stoichiometry of 2 CV-N: 1 Spike but does not bind to the receptor binding domain (RBD). Further mapping of CV-N binding sites on Spike shows that select high-mannose oligosaccharides in the S1 domain of Spike are targeted by CV-N. CV-N also reduced viral loads in the nares and lungs in vivo to protect hamsters against a lethal viral challenge. In summary, we present an anti-coronavirus agent that works by an unexploited mechanism and prevents infection by a broad range of SARS-CoV-2 strains.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Oligosacáridos/farmacología , Lectinas
2.
Age Ageing ; 51(5)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35595256

RESUMEN

BACKGROUND: SARS-CoV-2 vaccination is the most effective strategy to protect older residents of long-term care facilities (LTCF) against severe COVID-19, but primary vaccine responses are less effective in older adults. Here, we characterised the humoral responses of institutionalised seniors 3 months after they had received the mRNA/BNT162b2 vaccine. METHODS: plasma levels of SARS-CoV-2-specific total IgG, IgM and IgA antibodies were measured before and 3 months after vaccination in older residents of LTCF. Neutralisation capacity was assessed in a pseudovirus neutralisation assay against the original WH1 and later B.1.617.2/Delta variants. A group of younger adults was used as a reference group. RESULTS: three months after vaccination, uninfected older adults presented reduced SARS-CoV-2-specific IgG levels and a significantly lower neutralisation capacity against the WH1 and Delta variants compared with vaccinated uninfected younger individuals. In contrast, COVID-19-recovered older adults showed significantly higher SARS-CoV-2-specific IgG levels after vaccination than their younger counterparts, whereas showing similar neutralisation activity against the WH1 virus and an increased neutralisation capacity against the Delta variant. Although, similarly to younger individuals, previously infected older adults elicit potent cross-reactive immune responses, higher quantities of SARS-CoV-2-specific IgG antibodies are required to reach the same neutralisation levels. CONCLUSIONS: although hybrid immunity seems to be active in previously infected older adults 3 months after mRNA/BNT162b2 vaccination, humoral immune responses are diminished in COVID-19 uninfected but vaccinated older residents of LTCF. These results suggest that a vaccine booster dose should be prioritised for this particularly vulnerable population.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anciano , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina G , Cuidados a Largo Plazo , ARN Mensajero , Vacunación
3.
Plant Cell Rep ; 41(4): 1013-1023, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35178612

RESUMEN

KEY MESSAGE: Rice-produced SD1 retains its physicochemical properties and provides efficient pre-exposure HIV-1 prophylaxis against infection in vitro. Scytovirin (SVN) is an HIV-neutralizing lectin that features two structural domains (SD1 and SD2) that bind to HIV-1 envelope glycoproteins. We expressed SD1 in rice seeds as a potential large-scale production platform and confirmed that rice-derived SD1 binds the HIV-1 envelope glycoprotein gp120 in vitro. We analyzed the thermodynamic properties of SD1 compared to full-size SVN (produced in E. coli) by isothermal titration and differential scanning calorimetry to characterize the specific interactions between SVN/SD1 and gp120 as well as to high-mannose oligosaccharides. SVN bound with moderate affinity (Kd = 1.5 µM) to recombinant gp120, with 2.5-fold weaker affinity to nonamannoside (Kd of 3.9 µM), and with tenfold weaker affinity to tetramannoside (13.8 µM). The melting temperature (Tm) of full-size SVN was 59.1 °C and the enthalpy of unfolding (ΔHunf) was 16.4 kcal/mol, but the Tm fell when SVN bound to nonamannoside (56.5 °C) and twice as much energy was required for unfolding (ΔHunf = 33.5 kcal/mol). Interestingly, binding to tetramannoside destabilized the structure of SD1 (ΔTm ~ 11.5 °C) and doubled the enthalpy of unfolding, suggesting a dimerization event. The similar melting phenomenon shared by SVN and SD1 in the presence of oligomannose confirmed their conserved oligosaccharide-binding mechanisms. SD1 expressed in transgenic rice was able to neutralize HIV-1 in vitro. SD1 expressed in rice, therefore, is suitable as a microbicide component.


Asunto(s)
VIH-1 , Oryza , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Lectinas/química , Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Oryza/genética , Oryza/metabolismo , Sindactilia
4.
J Antimicrob Chemother ; 73(7): 1940-1948, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635527

RESUMEN

Background: Monotherapy with ritonavir-boosted PIs (PI/r) has been used to simplify treatment of HIV-1-infected patients. In previous studies raltegravir intensification evidenced ongoing viral replication and reduced T cell activation, preferentially in subjects receiving PI-based triple ART. However, data about low-level viral replication and its consequences in patients receiving PI/r monotherapy are scarce. Methods: We evaluated the impact of 24 weeks of intensification with raltegravir on markers of viral persistence, cellular immune activation and inflammation biomarkers in 33 patients receiving maintenance PI/r monotherapy with darunavir or lopinavir boosted with ritonavir. ClinicalTrials.gov identifier: NCT01480713. Results: The addition of raltegravir to PI/r monotherapy resulted in a transient increase in 2-LTR (long-terminal repeat) circles in a significant proportion of participants, along with decreases in CD8+ T cell activation levels and a temporary increase in the expression of the exhaustion marker CTLA-4 in peripheral T lymphocytes. Intensification with raltegravir also reduced the number of samples with intermediate levels of residual viraemia (10-60 HIV-1 RNA copies/mL) compared with samples taken during PI/r monotherapy. However, there were no changes in cell-associated HIV-1 DNA in peripheral CD4+ T cells or soluble inflammatory biomarkers (CD14, IP-10, IL-6, C-reactive protein and D-dimer). Conclusions: Intensification of PI/r monotherapy with raltegravir revealed persistent low-level viral replication and reduced residual viraemia in some patients during long-term PI/r monotherapy. The concomitant change in T cell phenotype suggests an association between active viral production and T cell activation. These results contribute to understanding the lower efficacy rates of PI/r monotherapies compared with triple therapies in clinical trials.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Proteasa del VIH/uso terapéutico , VIH-1/efectos de los fármacos , Raltegravir Potásico/uso terapéutico , Replicación Viral/efectos de los fármacos , Adulto , Terapia Antirretroviral Altamente Activa , Darunavir/uso terapéutico , Infecciones por VIH/inmunología , VIH-1/fisiología , Humanos , Inmunidad Celular , Inflamación , Lopinavir/uso terapéutico , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Prueba de Estudio Conceptual , ARN Viral , Viremia/tratamiento farmacológico
5.
Retrovirology ; 11: 44, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24909946

RESUMEN

BACKGROUND: The MPER region of the HIV-1 envelope glycoprotein gp41 is targeted by broadly neutralizing antibodies. However, the localization of this epitope in a hydrophobic environment seems to hamper the elicitation of these antibodies in HIV infected individuals.We have quantified and characterized anti-MPER antibodies by ELISA and by flow cytometry using a collection of mini gp41-derived proteins expressed on the surface of 293T cells. Longitudinal plasma samples from 35 HIV-1 infected individuals were assayed for MPER recognition and MPER-dependent neutralizing capacity using HIV-2 viruses engrafted with HIV-1 MPER sequences. RESULTS: Miniproteins devoid of the cysteine loop of gp41 exposed the MPER on 293T cell membrane. Anti-MPER antibodies were identified in most individuals and were stable when analyzed in longitudinal samples. The magnitude of the responses was strongly correlated with the global response to the HIV-1 envelope glycoprotein, suggesting no specific limitation for anti-MPER antibodies. Peptide mapping showed poor recognition of the C-terminal MPER moiety and a wide presence of antibodies against the 2F5 epitope. However, antibody titers failed to correlate with 2F5-blocking activity and, more importantly, with the specific neutralization of HIV-2 chimeric viruses bearing the HIV-1 MPER sequence; suggesting a strong functional heterogeneity in anti-MPER humoral responses. CONCLUSIONS: Anti-MPER antibodies can be detected in the vast majority of HIV-1 infected individuals and are generated in the context of the global anti-Env response. However, the neutralizing capacity is heterogeneous suggesting that eliciting neutralizing anti-MPER antibodies by immunization might require refinement of immunogens to skip nonneutralizing responses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Línea Celular , Epítopos/inmunología , Células HEK293 , Proteína gp41 de Envoltorio del VIH/inmunología , VIH-2/inmunología , Humanos , Inmunización/métodos , Pruebas de Neutralización/métodos
6.
Nat Commun ; 15(1): 1051, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316751

RESUMEN

Here we report the characterization of 17T2, a SARS-CoV-2 pan-neutralizing human monoclonal antibody isolated from a COVID-19 convalescent individual infected during the first pandemic wave. 17T2 is a class 1 VH1-58/κ3-20 antibody, derived from a receptor binding domain (RBD)-specific IgA+ memory B cell, with a broad neutralizing activity against former and new SARS-CoV-2 variants, including XBB.1.16 and BA.2.86 Omicron subvariants. Consistently, 17T2 demonstrates in vivo prophylactic and therapeutic activity against Omicron BA.1.1 infection in K18-hACE2 mice. Cryo-electron microscopy reconstruction shows that 17T2 binds the BA.1 spike with the RBD in "up" position and blocks the receptor binding motif, as other structurally similar antibodies do, including S2E12. Yet, unlike S2E12, 17T2 retains its neutralizing activity against all variants tested, probably due to a larger RBD contact area. These results highlight the impact of small structural antibody changes on neutralizing performance and identify 17T2 as a potential candidate for future clinical interventions.


Asunto(s)
Anticuerpos Monoclonales , COVID-19 , Humanos , Animales , Ratones , SARS-CoV-2 , Microscopía por Crioelectrón , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
7.
Nat Commun ; 15(1): 2349, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514609

RESUMEN

Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we describe the V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity is similar to S-2P in mice and golden Syrian hamsters (GSH), and superior to a monomeric RBD. S-V987H immunization confer full protection against severe disease in K18-hACE2 mice and GSH upon SARS-CoV-2 challenge (D614G or B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice show a faster tissue viral clearance than RBD- or S-2P-vaccinated animals challenged with D614G, B.1.351 or Omicron BQ1.1 variants. Thus, S-V987H protein might be considered for future SARS-CoV-2 vaccines development.


Asunto(s)
COVID-19 , Melfalán , SARS-CoV-2 , gammaglobulinas , Cricetinae , Animales , Humanos , Ratones , Mesocricetus , Vacunas contra la COVID-19 , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/genética , Inmunización , Glicoproteínas , Anticuerpos Neutralizantes , Anticuerpos Antivirales
8.
J Transl Med ; 11: 48, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23433486

RESUMEN

BACKGROUND: HIV-1 infection generates numerous abnormalities in the B cell compartment which can be partly reversed by antiretroviral therapy. Our aim was to evaluate the effects that re-exposure to HIV antigens might have on the frequency and functionality of antibody secreting cells (ASC) in patients undergoing structured treatment interruptions (STI). As re-exposure to viral antigens may also boost the production of (neutralizing) antibodies, we also assessed the neutralizing activities during STI cycles. METHODS: Retrospective study of 10 patients undergoing 3 cycles of STI with 2 weeks on and 4 weeks off HAART. ASC frequencies were determined by flow cytometry in samples obtained at the beginning and the end of STI. Neutralization capacity, total IgG concentration and anti-gp120-IgG titres were evaluated. RESULTS: As expected, median viral loads were higher at the end of STI compared to on-HAART time points. The level of CD27 and CD38 expressing ACS followed the same pattern; with ASC being elevated up to 16 fold in some patients (median increase of 3.5% ± 4.13). Eight out of 10 patients maintained stable total IgG levels during the study. After purifying IgG fractions from plasma, HIV-neutralizing activity was observed in the two subjects with highest anti-gp120 titers. In one of these patients the neutralizing activity remained constant while the other showed elevated neutralizing Ab after first STI and once treatment was reinitiated after the 2nd STI. CONCLUSIONS: Our data suggest that STI and its associated transient increases in viral load drive the frequencies of ASC in an antigen-specific manner. In some subjects, this re-exposure to autologous virus boosts the presence of neutralizing antibodies, similar to what is seen after influenza vaccination. STI may not boost clinically beneficial nAb levels but offers opportunities to isolate nAb producing cells at considerably higher levels than in subjects with completely suppressed viral replication.


Asunto(s)
Fármacos Anti-VIH/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Fármacos Anti-VIH/uso terapéutico , Terapia Antirretroviral Altamente Activa , Estudios de Cohortes , Esquema de Medicación , Citometría de Flujo , Humanos , Inmunoglobulina G/inmunología
9.
Mol Oncol ; 17(4): 686-694, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36495129

RESUMEN

Patients with solid tumors have been a risk group since the beginning of the SARS-CoV-2 pandemic due to more significant complications, hospitalizations or deaths. The immunosuppressive state of cancer treatments or the tumor itself could influence the development of post-vaccination antibodies. This study prospectively analyzed 89 patients under chemotherapy and/or immunotherapy, who received two doses of the mRNA-1237 vaccine, and were compared with a group of 26 non-cancer individuals. Information on adverse events and neutralizing antibodies against the ancestral strain of SARS-CoV-2 (WH1) have been analyzed. Local reactions accounted for 65%, while systemic reactions accounted for 46% of oncologic individuals/cancer patients. Regarding the response to vaccination, 6.7% of cancer patients developed low neutralizing antibody levels. Lower levels of neutralizing antibodies between cancer and non-cancer groups were significant in individuals without previous SARS-CoV-2 infection, but not in previously infected individuals. We also observed that patients receiving chemotherapy or chemoimmunotherapy have significantly lower levels of neutralizing antibodies than non-cancer individuals. In conclusion, our study confirms the importance of prioritizing cancer patients receiving anticancer treatment in SARS-CoV-2 vaccination programs.


Asunto(s)
COVID-19 , Neoplasias , Humanos , SARS-CoV-2 , Anticuerpos Neutralizantes , Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Inmunoterapia , Neoplasias/tratamiento farmacológico , ARN Mensajero
10.
Vaccine ; 41(35): 5072-5078, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37460353

RESUMEN

The continuing high global incidence of COVID-19 and the undervaccinated status of billions of persons strongly motivate the development of a new generation of efficacious vaccines. We have developed an adjuvanted vaccine candidate, PHH-1V, based on a protein comprising the receptor binding domain (RBD) of the Beta variant of SARS-CoV-2 fused in tandem with the equivalent domain of the Alpha variant, with its immunogenicity, safety and efficacy previously demonstrated in mouse models. In the present study, we immunized pigs with different doses of PHH-1V in a prime-and-boost scheme showing PHH-1V to exhibit an excellent safety profile in pigs and to produce a solid RBD-specific humoral response with neutralising antibodies to 7 distinct SARS-CoV-2 variants of concern, with the induction of a significant IFNγ+ T-cell response. We conclude that PHH-1V is safe and elicits a robust immune response to SARS-CoV-2 in pigs, a large animal preclinical model.


Asunto(s)
COVID-19 , Ratones , Animales , Porcinos , COVID-19/prevención & control , SARS-CoV-2 , Vacunas contra la COVID-19/efectos adversos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Inmunogenicidad Vacunal , Glicoproteína de la Espiga del Coronavirus/genética
11.
iScience ; 26(4): 106457, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36999095

RESUMEN

The elicitation of cross-variant neutralizing antibodies against SARS-CoV-2 represents a major goal for current COVID-19 vaccine strategies. Additionally, natural infection may also contribute to broaden neutralizing responses. To assess the contribution of vaccines and natural infection, we cross-sectionally analyzed plasma neutralization titers of six groups of individuals, organized according to the number of vaccines they received and their SARS-CoV-2 infection history. Two doses of vaccine had a limited capacity to generate cross-neutralizing antibodies against Omicron variants of concern (VOCs) in uninfected individuals, but efficiently synergized with previous natural immunization in convalescent individuals. In contrast, booster dose had a critical impact on broadening the cross-neutralizing response in uninfected individuals, to level similar to hybrid immunity, while still improving cross-neutralizing responses in convalescent individuals. Omicron breakthrough infection improved cross-neutralization of Omicron subvariants in non-previously infected vaccinated individuals. Therefore, ancestral Spike-based immunization, via infection or vaccination, contributes to broaden SARS-CoV-2 humoral immunity.

12.
iScience ; 26(7): 107224, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37502366

RESUMEN

SARS-CoV-2 emerged in December 2019 and quickly spread worldwide, continuously striking with an unpredictable evolution. Despite the success in vaccine production and mass vaccination programs, the situation is not still completely controlled, and therefore accessible second-generation vaccines are required to mitigate the pandemic. We previously developed an adjuvanted vaccine candidate coded PHH-1V, based on a heterodimer fusion protein comprising the RBD domain of two SARS-CoV-2 variants. Here, we report data on the efficacy, safety, and immunogenicity of PHH-1V in cynomolgus macaques. PHH-1V prime-boost vaccination induces high levels of RBD-specific IgG binding and neutralizing antibodies against several SARS-CoV-2 variants, as well as a balanced Th1/Th2 cellular immune response. Remarkably, PHH-1V vaccination prevents SARS-CoV-2 replication in the lower respiratory tract and significantly reduces viral load in the upper respiratory tract after an experimental infection. These results highlight the potential use of the PHH-1V vaccine in humans, currently undergoing Phase III clinical trials.

13.
NPJ Vaccines ; 8(1): 51, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024469

RESUMEN

Antigen display on the surface of Virus-Like Particles (VLPs) improves immunogenicity compared to soluble proteins. We hypothesised that immune responses can be further improved by increasing the antigen density on the surface of VLPs. In this work, we report an HIV-1 Gag-based VLP platform engineered to maximise the presence of antigen on the VLP surface. An HIV-1 gp41-derived protein (Min), including the C-terminal part of gp41 and the transmembrane domain, was fused to HIV-1 Gag. This resulted in high-density MinGag-VLPs. These VLPs demonstrated to be highly immunogenic in animal models using either a homologous (VLP) or heterologous (DNA/VLP) vaccination regimen, with the latter yielding 10-fold higher anti-Gag and anti-Min antibody titres. Despite these strong humoral responses, immunisation with MinGag-VLPs did not induce neutralising antibodies. Nevertheless, antibodies were predominantly of an IgG2b/IgG2c profile and could efficiently bind CD16-2. Furthermore, we demonstrated that MinGag-VLP vaccination could mediate a functional effect and halt the progression of a Min-expressing tumour cell line in an in vivo mouse model.

14.
Front Immunol ; 14: 1291972, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124756

RESUMEN

Most COVID-19 vaccines are based on the SARS-CoV-2 Spike glycoprotein (S) or their subunits. However, S shows some structural instability that limits its immunogenicity and production, hampering the development of recombinant S-based vaccines. The introduction of the K986P and V987P (S-2P) mutations increases the production and immunogenicity of the recombinant S trimer, suggesting that these two parameters are related. Nevertheless, S-2P still shows some molecular instability and it is produced with low yield. Here we described a novel set of mutations identified by molecular modeling and located in the S2 region of the S-2P that increase its production up to five-fold. Besides their immunogenicity, the efficacy of two representative S-2P-based mutants, S-29 and S-21, protecting from a heterologous SARS-CoV-2 Beta variant challenge was assayed in K18-hACE2 mice (an animal model of severe SARS-CoV-2 disease) and golden Syrian hamsters (GSH) (a moderate disease model). S-21 induced higher level of WH1 and Delta variants neutralizing antibodies than S-2P in K18-hACE2 mice three days after challenge. Viral load in nasal turbinate and oropharyngeal samples were reduced in S-21 and S-29 vaccinated mice. Despite that, only the S-29 protein protected 100% of K18-hACE2 mice from severe disease. When GSH were analyzed, all immunized animals were protected from disease development irrespectively of the immunogen they received. Therefore, the higher yield of S-29, as well as its improved immunogenicity and efficacy protecting from the highly pathogenic SARS-CoV-2 Beta variant, pinpoint the S-29 mutant as an alternative to the S-2P protein for future SARS-CoV-2 vaccine development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Ratones , SARS-CoV-2/genética , Mesocricetus , COVID-19/prevención & control , Vacunas contra la COVID-19
15.
iScience ; 26(3): 106126, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36748086

RESUMEN

Current COVID-19 vaccines have been associated with a decline in infection rates, prevention of severe disease, and a decrease in mortality rates. However, SARS-CoV-2 variants are continuously evolving, and development of new accessible COVID-19 vaccines is essential to mitigate the pandemic. Here, we present data on preclinical studies in mice of a receptor-binding domain (RBD)-based recombinant protein vaccine (PHH-1V) consisting of an RBD fusion heterodimer comprising the B.1.351 and B.1.1.7 SARS-CoV-2 variants formulated in SQBA adjuvant, an oil-in-water emulsion. A prime-boost immunisation with PHH-1V in BALB/c and K18-hACE2 mice induced a CD4+ and CD8+ T cell response and RBD-binding antibodies with neutralizing activity against several variants, and also showed a good tolerability profile. Significantly, RBD fusion heterodimer vaccination conferred 100% efficacy, preventing mortality in SARS-CoV-2 infected K18-hACE2 mice, but also reducing Beta, Delta and Omicron infection in lower respiratory airways. These findings demonstrate the feasibility of this recombinant vaccine strategy.

16.
Retrovirology ; 9: 15, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22333046

RESUMEN

BACKGROUND: Resistance to the fusion inhibitor enfuvirtide (ENF) is achieved by changes in the gp41 subunit of the HIV envelope glycoprotein (Env). Specific ENF-associated mutational pathways correlate with immunological recovery, even after virological failure, suggesting that the acquisition of ENF resistance alters gp41 pathogenicity. To test this hypothesis, we have characterized the expression, fusion capability, induction of CD4+ T cell loss and single CD4+ T cell death of 48 gp41 proteins derived from three patients displaying different amino acids (N, T or I) at position 140 that developed a V38A mutation after ENF-based treatment. RESULTS: In all cases, intra-patient comparison of Env isolated pre- or post-treatment showed comparable values of expression and fusogenic capacity. Furthermore, Env with either N or T at position 140 induced comparable losses of CD4+ T-cells, irrespective of the residue present at position 38. Conversely, Env acquiring the V38A mutation in a 140I background induced a significantly reduced loss of CD4+ T cells and lower single-cell death than did their baseline controls. No altered ability to induce single-cell death was observed in the other clones. CONCLUSIONS: Overall, primary gp41 proteins with both V38A and N140I changes showed a reduced ability to induce single cell death and deplete CD4+ T cells, despite maintaining fusion activity. The specificity of this phenotype highlights the relevance of the genetic context to the cytopathic capacity of Env and the role of ENF-resistance mutations in modulating viral pathogenicity in vivo, further supporting the hypothesis that gp41 is a critical mediator of HIV pathogenesis.


Asunto(s)
Fármacos Anti-VIH/administración & dosificación , Farmacorresistencia Viral , Proteína gp41 de Envoltorio del VIH/administración & dosificación , Proteína gp41 de Envoltorio del VIH/genética , VIH-1/patogenicidad , Mutación Missense , Fragmentos de Péptidos/administración & dosificación , Factores de Virulencia/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Fármacos Anti-VIH/farmacología , Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD4-Positivos/virología , Supervivencia Celular , Enfuvirtida , Proteína gp41 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fragmentos de Péptidos/farmacología , Virulencia , Factores de Virulencia/metabolismo
17.
Front Microbiol ; 13: 763039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401460

RESUMEN

The understanding of HIV-1 pathogenesis and clinical progression is incomplete due to the variable contribution of host, immune, and viral factors. The involvement of viral factors has been investigated in extreme clinical phenotypes from rapid progressors to long-term non-progressors (LTNPs). Among HIV-1 proteins, the envelope glycoprotein complex (Env) has been concentrated on in many studies for its important role in the immune response and in the first steps of viral replication. In this study, we analyzed the contribution of 41 Envs from 24 patients with different clinical progression rates and viral loads (VLs), LTNP-Elite Controllers (LTNP-ECs); Viremic LTNPs (vLTNPs), and non-controller individuals contemporary to LTNPs or recent, named Old and Modern progressors. We studied the Env expression, the fusion and cell-to-cell transfer capacities, as well as viral infectivity. The sequence and phylogenetic analysis of Envs were also performed. In every functional characteristic, the Envs from subjects with viral control (LTNP-ECs and vLTNPs) showed significant lower performance compared to those from the progressor individuals (Old and Modern). Regarding sequence analysis, the variable loops of the gp120 subunit of the Env (i.e., V2, V4, and mainly V5) of the progressor individuals showed longer and more glycosylated sequences than controller subjects. Therefore, HIV-1 Envs from virus of patients presenting viremic control and the non-progressor clinical phenotype showed poor viral functions and shorter sequences, whereas functional Envs were associated with virus of patients lacking virological control and with progressor clinical phenotypes. These correlations support the role of Env genotypic and phenotypic characteristics in the in vivo HIV-1 infection and pathogenesis.

18.
Biomedicines ; 10(9)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36140273

RESUMEN

In the absence of antiviral therapy, HIV-1 infection progresses to a wide spectrum of clinical manifestations that are the result of an entangled contribution of host, immune and viral factors. The contribution of these factors is not completely established. Several investigations have described the involvement of the immune system in the viral control. In addition, distinct HLA-B alleles, HLA-B27, -B57-58, were associated with infection control. The combination of these elements and antiviral host restriction factors results in different clinical outcomes. The role of the viral proteins in HIV-1 infection has been, however, less investigated. We will review contributions dedicated to the pathogenesis of HIV-1 infection focusing on studies identifying the function of the viral envelope glycoprotein (Env) in the clinical progression because of its essential role in the initial events of the virus life-cycle. Some analysis showed that inefficient viral Envs were dominant in non-progressor individuals. These poorly-functional viral proteins resulted in lower cellular activation, viral replication and minor viral loads. This limited viral antigenic production allows a better immune response and a lower immune exhaustion. Thus, the properties of HIV-1 Env are significant in the clinical outcome of the HIV-1 infection and AIDS pathogenesis.

19.
Front Immunol ; 13: 860215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572570

RESUMEN

Background: Evidence on the determinants of the magnitude of humoral responses and neutralizing titers in individuals with mild COVID-19 is scarce. Methods: In this cohort study of mild COVID-19 patients, we assessed viral load (VL) by RT-qPCR at two/three time points during acute infection, and anti-SARS-CoV-2 antibodies by ELISA and plasma neutralizing responses using a pseudovirus assay at day 60. Results: Seventy-one individuals (65% female, median 42 years old) were recruited and grouped into high viral load (VL) >7.5 Log10 copies/mL (n=20), low, VL ≤7.5 Log10 copies/mL (n=22), or as Non-early seroconverters with a positive PCR (n=20), and healthy individuals with a negative PCR (n=9). Individuals with high or low VL showed similar titers of total neutralizing antibodies at day 60, irrespective of maximal VL or viral dynamics. Non-early seroconverters had lower antibody titers on day 60, albeit similar neutralizing activity as the groups with high or low VL. Longer symptom duration and older age were independently associated with increased humoral responses. Conclusions: In mild SARS-CoV-2-infected individuals, the duration of symptoms and age (but not VL) contribute to higher humoral responses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Estudios de Cohortes , Femenino , Humanos , Masculino
20.
Sci Rep ; 12(1): 14772, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042275

RESUMEN

Limited data exists on SARS-CoV-2 sustained-response to vaccine in patients with rheumatic diseases. This study aims to evaluate neutralizing antibodies (nAB) induced by SARS-CoV-2 vaccine after 3 to 6 months from administration in Systemic Lupus Erythematosus (SLE) patients, as a surrogate of sustained-immunological response. This cross-sectional study compared nAB titre of 39 SLE patients and 37 Healthy individuals with no previous SARS-CoV-2 infection, who had all received a complete regimen of a mRNA SARS-CoV-2 vaccine within the last 3 to 6 months. We included four lines of SLE treatment including Not-treated, Hydroxychloroquine, immunosuppressive drugs and biological therapy. Glucocorticoids were allowed in all groups. Healthy and Not-treated individuals showed the highest levels of nAB. Treated patients presented lower nAB titres compared to Healthy: a 73% decrease for First-Line patients, 56% for Second-Line treatment and 72% for Third-Line. A multivariate analysis pointed to Glucocorticoids as the most associated factor with declining nAB levels (75% decrease) in treated SLE. Furthermore, a significant reduction in nAB titres was observed for Rituximab-users compared to Healthy subjects (89% decrease). Medium-term response of SLE patients to SARS-CoV-2 mRNA vaccines is negatively impacted in Glucocorticoids and Rituximab users. These findings might help to inform recommendations in vaccination protocols for SLE patients.


Asunto(s)
COVID-19 , Lupus Eritematoso Sistémico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios Transversales , Glucocorticoides/uso terapéutico , Humanos , Rituximab/uso terapéutico , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA