Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(3): 751-765.e16, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30318143

RESUMEN

We examined how the immune microenvironment molds tumor evolution at different metastatic organs in a longitudinal dataset of colorectal cancer. Through multiplexed analyses, we showed that clonal evolution patterns during metastatic progression depend on the immune contexture at the metastatic site. Genetic evidence of neoantigen depletion was observed in the sites with high Immunoscore and spatial proximity between Ki67+ tumor cells and CD3+ cells. The immunoedited tumor clones were eliminated and did not recur, while progressing clones were immune privileged, despite the presence of tumor-infiltrating lymphocytes. Characterization of immune-privileged metastases revealed tumor-intrinsic and tumor-extrinsic mechanisms of escape. The lowest recurrence risk was associated with high Immunoscore, occurrence of immunoediting, and low tumor burden. We propose a parallel selection model of metastatic progression, where branched evolution could be traced back to immune-escaping clones. The findings could inform the understanding of cancer dissemination and the development of immunotherapeutics.


Asunto(s)
Infiltración Leucémica/inmunología , Modelos Estadísticos , Neoplasias/inmunología , Carga Tumoral/inmunología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/patología , Microambiente Tumoral/inmunología
2.
Immunity ; 54(2): 367-386.e8, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33567262

RESUMEN

Understanding the contribution of the host's genetic background to cancer immunity may lead to improved stratification for immunotherapy and to the identification of novel therapeutic targets. We investigated the effect of common and rare germline variants on 139 well-defined immune traits in ∼9000 cancer patients enrolled in TCGA. High heritability was observed for estimates of NK cell and T cell subset infiltration and for interferon signaling. Common variants of IFIH1, TMEM173 (STING1), and TMEM108 were associated with differential interferon signaling and variants mapping to RBL1 correlated with T cell subset abundance. Pathogenic or likely pathogenic variants in BRCA1 and in genes involved in telomere stabilization and Wnt-ß-catenin also acted as immune modulators. Our findings provide evidence for the impact of germline genetics on the composition and functional orientation of the tumor immune microenvironment. The curated datasets, variants, and genes identified provide a resource toward further understanding of tumor-immune interactions.


Asunto(s)
Mutación de Línea Germinal/genética , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Genes BRCA1 , Estudio de Asociación del Genoma Completo , Humanos , Interferones/metabolismo , Masculino , Persona de Mediana Edad , Neoplasias/genética , Carácter Cuantitativo Heredable , Proteína p107 Similar a la del Retinoblastoma/genética , Transducción de Señal/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
3.
J Transl Med ; 22(1): 270, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475820

RESUMEN

Most anti-cancer modalities are designed to directly kill cancer cells deploying mechanisms of action (MOAs) centered on the presence of a precise target on cancer cells. The efficacy of these approaches is limited because the rapidly evolving genetics of neoplasia swiftly circumvents the MOA generating therapy-resistant cancer cell clones. Other modalities engage endogenous anti-cancer mechanisms by activating the multi-cellular network (MCN) surrounding neoplastic cells in the tumor microenvironment (TME). These modalities hold a better chance of success because they activate numerous types of immune effector cells that deploy distinct cytotoxic MOAs. This in turn decreases the chance of developing treatment-resistance. Engagement of the MCN can be attained through activation of immune effector cells that in turn kill cancer cells or when direct cancer killing is complemented by the production of proinflammatory factors that secondarily recruit and activate immune effector cells. For instance, adoptive cell therapy (ACT) supplements cancer cell killing with the release of homeostatic and pro-inflammatory cytokines by the immune cells and damage associated molecular patterns (DAMPs) by dying cancer cells. The latter phenomenon, referred to as immunogenic cell death (ICD), results in an exponential escalation of anti-cancer MOAs at the tumor site. Other approaches can also induce exponential cancer killing by engaging the MCN of the TME through the release of DAMPs and additional pro-inflammatory factors by dying cancer cells. In this commentary, we will review the basic principles that support emerging paradigms likely to significantly improve the efficacy of anti-cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/terapia , Antineoplásicos/uso terapéutico , Citocinas/metabolismo , Microambiente Tumoral
4.
Mol Cancer ; 22(1): 20, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717905

RESUMEN

In the last decade, Chimeric Antigen Receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach to fight cancers. This approach consists of genetically engineered immune cells expressing a surface receptor, called CAR, that specifically targets antigens expressed on the surface of tumor cells. In hematological malignancies like leukemias, myeloma, and non-Hodgkin B-cell lymphomas, adoptive CAR-T cell therapy has shown efficacy in treating chemotherapy refractory patients. However, the value of this therapy remains inconclusive in the context of solid tumors and is restrained by several obstacles including limited tumor trafficking and infiltration, the presence of an immunosuppressive tumor microenvironment, as well as adverse events associated with such therapy. Recently, CAR-Natural Killer (CAR-NK) and CAR-macrophages (CAR-M) were introduced as a complement/alternative to CAR-T cell therapy for solid tumors. CAR-NK cells could be a favorable substitute for CAR-T cells since they do not require HLA compatibility and have limited toxicity. Additionally, CAR-NK cells might be generated in large scale from several sources which would suggest them as promising off-the-shelf product. CAR-M immunotherapy with its capabilities of phagocytosis, tumor-antigen presentation, and broad tumor infiltration, is currently being investigated. Here, we discuss the emerging role of CAR-T, CAR-NK, and CAR-M cells in solid tumors. We also highlight the advantages and drawbacks of CAR-NK and CAR-M cells compared to CAR-T cells. Finally, we suggest prospective solutions such as potential combination therapies to enhance the efficacy of CAR-cells immunotherapy.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Estudios Prospectivos , Neoplasias/patología , Inmunoterapia Adoptiva/efectos adversos , Tratamiento Basado en Trasplante de Células y Tejidos , Microambiente Tumoral
5.
J Transl Med ; 21(1): 162, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864446

RESUMEN

Mammalian cells responding to specific perturbations of homeostasis can undergo a regulated variant of cell death that elicits adaptive immune responses. As immunogenic cell death (ICD) can only occur in a precise cellular and organismal context, it should be conceptually differentiated from instances of immunostimulation or inflammatory responses that do not mechanistically depend on cellular demise. Here, we critically discuss key conceptual and mechanistic aspects of ICD and its implications for cancer (immuno)therapy.


Asunto(s)
Muerte Celular Inmunogénica , Neoplasias , Animales , Neoplasias/terapia , Muerte Celular , Diferenciación Celular , Homeostasis , Mamíferos
6.
J Transl Med ; 21(1): 757, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884933

RESUMEN

Liver steatosis, inflammation, and variable degrees of fibrosis are the pathological manifestations of nonalcoholic steatohepatitis (NASH), an aggressive presentation of the most prevalent chronic liver disease in the Western world known as nonalcoholic fatty liver (NAFL). Mitochondrial hepatocyte dysfunction is a primary event that triggers inflammation, affecting Kupffer and hepatic stellate cell behaviour. Here, we consider the role of impaired mitochondrial function caused by lipotoxicity during oxidative stress in hepatocytes. Dysfunction in oxidative phosphorylation and mitochondrial ROS production cause the release of damage-associated molecular patterns from dying hepatocytes, leading to activation of innate immunity and trans-differentiation of hepatic stellate cells, thereby driving fibrosis in NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/patología , Hepatocitos/patología , Inflamación/patología , Fibrosis , Mitocondrias/patología
7.
J Transl Med ; 21(1): 682, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37779207

RESUMEN

BACKGROUND: Recent progress in cancer immunotherapy encourages the expansion of chimeric antigen receptor (CAR) T cell therapy in solid tumors including hepatocellular carcinoma (HCC). Overexpression of MET receptor tyrosine kinase is common in HCC; however, MET inhibitors are effective only when MET is in an active form, making patient stratification difficult. Specific MET-targeting CAR-T cells hold the promise of targeting HCC with MET overexpression regardless of signaling pathway activity. METHODS: MET-specific CARs with CD28ζ or 4-1BBζ as co-stimulation domains were constructed. MET-CAR-T cells derived from healthy subjects (HS) and HCC patients were evaluated for their killing activity and cytokine release against HCC cells with various MET activations in vitro, and for their tumor growth inhibition in orthotopic xenograft models in vivo. RESULTS: MET-CAR.CD28ζ and MET-CAR.4-1BBζ T cells derived from both HS and HCC patients specifically killed MET-positive HCC cells. When stimulated with MET-positive HCC cells in vitro, MET-CAR.CD28ζ T cells demonstrated a higher level of cytokine release and expression of programmed cell death protein 1 (PD-1) than MET-CAR.4-1BBζ T cells. When analyzed in vivo, MET-CAR.CD28ζ T cells more effectively inhibited HCC orthotopic tumor growth in mice when compared to MET-CAR.4-1BBζ T cells. CONCLUSION: We generated and characterized MET-specific CAR-T cells for targeting HCC with MET overexpression regardless of MET activation. Compared with MET-CAR.4-1BBζ, MET-CAR.CD28ζ T cells showed a higher anti-HCC potency but also a higher level of T cell exhaustion. While MET-CAR.CD28ζ is preferred for further development, overcoming the exhaustion of MET-CAR-T cells is necessary to improve their therapeutic efficacy in vivo.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Linfocitos T , Proteínas Tirosina Quinasas/metabolismo , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Inmunoterapia Adoptiva , Citocinas/metabolismo , Transducción de Señal
8.
J Transl Med ; 21(1): 830, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37978542

RESUMEN

Advancing personalized medicine in brain cancer relies on innovative strategies, with mRNA vaccines emerging as a promising avenue. While the initial use of mRNA vaccines was in oncology, their stunning success in COVID-19 resulted in widespread attention, both positive and negative. Regardless of politically biased opinions, which relate more to the antigenic source than form of delivery, we feel it is important to objectively review this modality as relates to brain cancer. This class of vaccines trigger robust immune responses through MHC-I and MHC-II pathways, in both prophylactic and therapeutic settings. The mRNA platform offers advantages of rapid development, high potency, cost-effectiveness, and safety. This review provides an overview of mRNA vaccine delivery technologies, tumor antigen identification, combination therapies, and recent therapeutic outcomes, with a particular focus on brain cancer. Combinatorial approaches are vital to maximizing mRNA cancer vaccine efficacy, with ongoing clinical trials exploring combinations with adjuvants and checkpoint inhibitors and even adoptive cell therapy. Efficient delivery, neoantigen identification, preclinical studies, and clinical trial results are highlighted, underscoring mRNA vaccines' potential in advancing personalized medicine for brain cancer. Synergistic combinatorial therapies play a crucial role, emphasizing the need for continued research and collaboration in this area.


Asunto(s)
Neoplasias Encefálicas , Vacunas contra el Cáncer , Neoplasias , Humanos , Medicina de Precisión/métodos , Inmunoterapia/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , ARN Mensajero/genética , Neoplasias/terapia
9.
J Transl Med ; 21(1): 158, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855120

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapies for the treatment of hematological malignancies experienced tremendous progress in the last decade. However, essential limitations need to be addressed to further improve efficacy and reduce toxicity to assure CAR-T cell persistence, trafficking to the tumor site, resistance to an hostile tumor microenvironment (TME), and containment of toxicity restricting production of powerful but potentially toxic bioproducts to the TME; the last could be achieved through contextual release upon tumor antigen encounter of factors capable of converting an immune suppressive TME into one conducive to immune rejection. METHODS: We created an HER2-targeting CAR-T (RB-312) using a clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) system, which induces the expression of the IL-12 heterodimer via conditional transcription of its two endogenous subunits p35 and p40. This circuit includes two lentiviral constructs. The first one (HER2-TEV) expresses an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3z co-stimulatory domains linked to the tobacco etch virus (TEV) protease and two single guide RNAs (sgRNA) targeting the interleukin (IL)-12A and IL12B transcription start site (TSS), respectively. The second construct (LdCV) encodes linker for activation of T cells (LAT) fused to nuclease-deactivated Streptococcus Pyogenes Cas9 (dCas9)-VP64-p65-Rta (VPR) via a TEV-cleavable sequence (TCS). Activation of the CAR brings HER2-TEV in close proximity to LdCV releasing dCas9 for nuclear localization. This conditional circuit leads to conditional and reversible induction of the IL-12/p70 heterodimer. RB-312 was compared in vitro to controls (cRB-312), lacking the IL-12 sgRNAs and conventional HER2 CAR (convCAR). RESULTS: The inducible CRISPRa system activated endogenous IL-12 expression resulting in enhanced secondary interferon (FN)-γ production, cytotoxicity, and CAR-T proliferation in vitro, prolonged in vivo persistence and greater suppression of HER2+ FaDu oropharyngeal cancer cell growth compared to the conventional CAR-T cell product. No systemic IL-12 was detected in the peripheral circulation. Moreover, the combination with programmed death ligand (PD-L1) blockade demonstrated robust synergistic effects. CONCLUSIONS: RB-312, the first clinically relevant product incorporating a CRISPRa system with non-gene editing and reversible upregulation of endogenous gene expression that promotes CAR-T cells persistence and effectiveness against HER2-expressing tumors. The autocrine effects of reversible, nanoscale IL-12 production limits the risk of off-tumor leakage and systemic toxicity.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Antígeno B7-H1 , Antígenos CD28 , Interleucina-12/genética , Ligandos , Neoplasias/terapia , Sistemas de Liberación de Medicamentos
10.
Nat Immunol ; 12(12): 1230-7, 2011 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-22057288

RESUMEN

The transcriptional repressor Blimp-1 promotes the differentiation of CD8(+) T cells into short-lived effector cells (SLECs) that express the lectin-like receptor KLRG-1, but how it operates remains poorly defined. Here we show that Blimp-1 bound to and repressed the promoter of the gene encoding the DNA-binding inhibitor Id3 in SLECs. Repression of Id3 by Blimp-1 was dispensable for SLEC development but limited the ability of SLECs to persist as memory cells. Enforced expression of Id3 was sufficient to restore SLEC survival and enhanced recall responses. Id3 function was mediated in part through inhibition of the transcriptional activity of E2A and induction of genes regulating genome stability. Our findings identify the Blimp-1-Id3-E2A axis as a key molecular switch that determines whether effector CD8(+) T cells are programmed to die or enter the memory pool.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Proteínas Inhibidoras de la Diferenciación/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular/genética , Línea Celular Tumoral , Reparación del ADN , Replicación del ADN , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Proteínas Inhibidoras de la Diferenciación/genética , Lectinas Tipo C , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Regiones Promotoras Genéticas , Receptores Inmunológicos/metabolismo
11.
J Transl Med ; 20(1): 535, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401279

RESUMEN

Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.


Asunto(s)
Edición Génica , Terapia Genética , ARN Interferente Pequeño , Expresión Génica
12.
Am J Pathol ; 191(10): 1774-1786, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34303699

RESUMEN

Viruses are the second leading cause of cancer worldwide, and human papillomavirus (HPV)-associated head and neck cancers are increasing in incidence in the United States. HPV preferentially infects the crypts of the tonsils rather than the surface epithelium. The present study sought to characterize the unique microenvironment within the crypts to better understand the viral tropism of HPV to a lymphoid-rich organ. Laser-capture microdissection of distinct anatomic areas (crypts, surface epithelium, and germinal centers) of the tonsil, coupled with transcriptional analysis and multiparameter immunofluorescence staining demonstrated that the tonsillar crypts are enriched with myeloid populations that co-express multiple canonical and noncanonical immune checkpoints, including PD-L1, CTLA-4, HAVCR2 (TIM-3), ADORA2A, IDO1, BTLA, LGALS3, CDH1, CEACAM1, PVR, and C10orf54 (VISTA). The resident monocytes may foster a permissive microenvironment that facilitates HPV infection and persistence. Furthermore, the myeloid populations within HPV-associated tonsil cancers co-express the same immune checkpoints, providing insight into potential novel immunotherapeutic targets for HPV-associated head and neck cancers.


Asunto(s)
Alphapapillomavirus/fisiología , Células Mieloides/patología , Células Mieloides/virología , Tonsila Palatina/patología , Tonsila Palatina/virología , Tropismo Viral/fisiología , Antígenos CD/metabolismo , Antígenos B7/metabolismo , Antígeno B7-H1/metabolismo , Moléculas de Adhesión Celular/metabolismo , Epitelio/patología , Epitelio/virología , Centro Germinal/patología , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/virología , Humanos , Proteínas de Punto de Control Inmunitario/metabolismo , Captura por Microdisección con Láser , Monocitos/patología , Receptores Virales/metabolismo , Transcriptoma/genética
13.
Immunity ; 39(1): 11-26, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23890060

RESUMEN

Numerous analyses of large patient cohorts identified specific patterns of immune activation associated with patient survival. We established these as the immune contexture, encompassing the type, functional orientation, density, and location of adaptive immune cells within distinct tumor regions. Based on the immune contexture, a standardized, powerful immune stratification system, the Immunoscore, was delineated. The immune contexture is characterized by immune signatures also observed in association with the broader phenomenon of immune-mediated, tissue-specific destruction. We defined these as the immunologic constant of rejection. Predictive, prognostic, and mechanistic immune signatures overlap, and a continuum of intratumor immune reactions exists. The balance between tumor cell growth and elimination may be tipped upon a crescendo induced by immune manipulations aimed at enhancing naturally occurring immunosurveillance. Here, we propose a broader immunological interpretation of these three concepts--immune contexture, Immunoscore, and immunologic constant of rejection--that segregates oncogenic processes independently of their tissue origin.


Asunto(s)
Sistema Inmunológico/inmunología , Monitorización Inmunológica/métodos , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Sistema Inmunológico/metabolismo , Modelos Inmunológicos , Neoplasias/genética , Neoplasias/metabolismo , Pronóstico , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/genética
14.
Immunity ; 38(6): 1236-49, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23809164

RESUMEN

Tumor progression is accompanied by an altered myelopoiesis causing the accumulation of immunosuppressive cells. Here, we showed that miR-142-3p downregulation promoted macrophage differentiation and determined the acquisition of their immunosuppressive function in tumor. Tumor-released cytokines signaling through gp130, the common subunit of the interleukin-6 cytokine receptor family, induced the LAP∗ isoform of C/EBPß transcription factor, promoting macrophage generation. miR-142-3p downregulated gp130 by canonical binding to its messenger RNA (mRNA) 3' UTR and repressed C/EBPß LAP∗ by noncanonical binding to its 5' mRNA coding sequence. Enforced miR expression impaired macrophage differentiation both in vitro and in vivo. Mice constitutively expressing miR-142-3p in the bone marrow showed a marked increase in survival following immunotherapy with tumor-specific T lymphocytes. By modulating a specific miR in bone marrow precursors, we thus demonstrated the feasibility of altering tumor-induced macrophage differentiation as a potent tool to improve the efficacy of cancer immunotherapy.


Asunto(s)
Inmunoterapia/métodos , Macrófagos/inmunología , MicroARNs/metabolismo , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , ARN Mensajero/metabolismo , Animales , Antígenos de Neoplasias/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular/genética , Línea Celular Tumoral , Receptor gp130 de Citocinas/metabolismo , Inmunoterapia/tendencias , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Mielopoyesis/genética , Neoplasias Experimentales/terapia , ARN Mensajero/genética , Transducción de Señal , Esteroide Isomerasas/genética , Esteroide Isomerasas/metabolismo , Linfocitos T/inmunología , Linfocitos T/trasplante , Transgenes/genética , Escape del Tumor
15.
Br J Cancer ; 124(4): 760-769, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139798

RESUMEN

BACKGROUND: The balance between immune-stimulatory and immune-suppressive mechanisms in the tumour microenvironment is associated with tumour rejection and can predict the efficacy of immune checkpoint-inhibition therapies. METHODS: We consider the observed differences between the transcriptional programmes associated with cancer types where the levels of immune infiltration predict a favourable prognosis versus those in which the immune infiltration predicts an unfavourable prognosis and defined a score named Mediators of Immune Response Against Cancer in soLid microEnvironments (MIRACLE). MIRACLE deconvolves T cell infiltration, from inhibitory mechanisms, such as TGFß, EMT and PI3Kγ signatures. RESULTS: Our score outperforms current state-of-the-art immune signatures as a predictive marker of survival in TCGA (n = 9305, HR: 0.043, p value: 6.7 × 10-36). In a validation cohort (n = 7623), MIRACLE predicts better survival compared to other immune metrics (HR: 0.1985, p value: 2.73 × 10-38). MIRACLE also predicts response to checkpoint-inhibitor therapies (n = 333). The tumour-intrinsic factors inversely associated with the reported score such as EGFR, PRKAR1A and MAP3K1 are frequently associated with immune-suppressive phenotypes. CONCLUSIONS: The association of cancer outcome with the level of infiltrating immune cells is mediated by the balance of activatory and suppressive factors. MIRACLE accounts for this balance and predicts favourable cancer outcomes.


Asunto(s)
Neoplasias/genética , Neoplasias/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Estudios de Cohortes , Bases de Datos Genéticas , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Vigilancia Inmunológica , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Análisis de Supervivencia
16.
J Transl Med ; 19(1): 9, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407613

RESUMEN

Over the last few years, cancer immunotherapy experienced tremendous developments and it is nowadays considered a promising strategy against many types of cancer. However, the exclusion of lymphocytes from the tumor nest is a common phenomenon that limits the efficiency of immunotherapy in solid tumors. Despite several mechanisms proposed during the years to explain the immune excluded phenotype, at present, there is no integrated understanding about the role played by different models of immune exclusion in human cancers. Hypoxia is a hallmark of most solid tumors and, being a multifaceted and complex condition, shapes in a unique way the tumor microenvironment, affecting gene transcription and chromatin remodeling. In this review, we speculate about an upstream role for hypoxia as a common biological determinant of immune exclusion in solid tumors. We also discuss the current state of ex vivo and in vivo imaging of hypoxic determinants in relation to T cell distribution that could mechanisms of immune exclusion and discover functional-morphological tumor features that could support clinical monitoring.


Asunto(s)
Inmunoterapia , Neoplasias , Hipoxia de la Célula , Humanos , Hipoxia , Linfocitos T , Microambiente Tumoral
17.
J Transl Med ; 19(1): 459, 2021 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-34743703

RESUMEN

BACKGROUND: Adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells combined with checkpoint inhibition may prevent T cell exhaustion and improve clinical outcomes. However, the approach is limited by cumulative costs and toxicities. METHODS: To overcome this drawback, we created a CAR-T (RB-340-1) that unites in one product the two modalities: a CRISPR interference-(CRISPRi) circuit prevents programmed cell death protein 1 (PD-1) expression upon antigen-encounter. RB-340-1 is engineered to express an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3ζ co-stimulatory domains linked to the tobacco etch virus (TEV) protease and a single guide RNA (sgRNA) targeting the PD-1 transcription start site (TSS). A second constructs includes linker for activation of T cells (LAT) fused to nuclease-deactivated spCas9 (dCas9)-Kruppel-associated box (KRAB) via a TEV-cleavable sequence (TCS). Upon antigen encounter, the LAT-dCas9-KRAB (LdCK) complex is cleaved by TEV allowing targeting of dCas9-KRAB to the PD-1 gene TSS. RESULTS: Here, we show that RB-340-1 consistently demonstrated higher production of homeostatic cytokines, enhanced expansion of CAR-T cells in vitro, prolonged in vivo persistence and more efficient suppression of HER2+ FaDu oropharyngeal cancer growth compared to the respective conventional CAR-T cell product. CONCLUSIONS: As the first application of CRISPRi toward a clinically relevant product, RB-340-1 with the conditional, non-gene editing and reversible suppression promotes CAR-T cells resilience to checkpoint inhibition, and their persistence and effectiveness against HER2-expressing cancer xenografts.


Asunto(s)
Neoplasias , Anticuerpos de Cadena Única , Antígenos CD28/genética , Línea Celular Tumoral , Humanos , Inmunoterapia Adoptiva , ARN Guía de Kinetoplastida , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T
18.
J Transl Med ; 18(1): 363, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967676

RESUMEN

BACKGROUND: Adoptive transfer of engineered immune cells is a promising strategy for cancer treatment. However, low transduction efficiency particularly when large payload lentiviral vectors are used on primary T cells is a limitation for the development of cell therapy platforms that include multiple constructs bearing long DNA sequences. RB-340-1 is a new CAR T cell that combines two strategies in one product through a CRISPR interference (CRISPRi) circuit. Because multiple regulatory components are included in the circuit, RB-340-1 production needs delivery of two lentiviral vectors into human primary T cells, both containing long DNA sequences. To improve lentiviral transduction efficiency, we looked for inhibitors of receptors involved in antiviral response. BX795 is a pharmacological inhibitor of the TBK1/IKKɛ complex, which has been reported to augment lentiviral transduction of human NK cells and some cell lines, but it has not been tested with human primary T cells. The purpose of this study was to test if BX795 treatment promotes large payload RB-340-1 lentiviral transduction of human primary T cells. METHODS: To make the detection of gene delivery more convenient, we constructed another set of RB-340-1 constructs containing fluorescent labels named RB-340-1F. We incorporated BX795 treatment into the human primary T cell transduction procedure that was optimized for RB-340-1F. We tested BX795 with T cells collected from multiple donors, and detected the effect of BX795 on T cell transduction, phenotype, cell growth and cell function. RESULTS: We found that BX795 promotes RB-340-1F lentiviral transduction of human primary T cells, without dramatic change in cell growth and T cell functions. Meanwhile, BX795 treatment increased CD8+ T cell ratios in transduced T cells. CONCLUSIONS: These results indicate that BX795 treatment is effective, and might be a safe approach to promote RB-340-1F lentiviral transduction of human primary T cells. This approach might also be helpful for other T cell therapy products that need delivery of complicated platform via large payload lentiviral vectors.


Asunto(s)
Vectores Genéticos , Lentivirus , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Lentivirus/genética , Proteínas Serina-Treonina Quinasas , Pirimidinas , Tiofenos , Transducción Genética
19.
J Transl Med ; 18(1): 192, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393282

RESUMEN

BACKGROUND: Most mutations in melanoma affect one critical amino acid on BRAF gene, resulting in the V600E substitution. Patient management is often based on the use of specific inhibitors targeting this mutation. METHODS: DNA and RNA mutation status was assessed in 15 melanoma cell lines by Sanger sequencing and RNA-seq. We tested the cell lines responsiveness to BRAF inhibitors (vemurafenib and PLX4720, BRAF-specific and sorafenib, BRAF non-specific). Cell proliferation was assessed by MTT colorimetric assay. BRAF V600E RNA expression was assessed by qPCR. Expression level of phosphorylated-ERK protein was assessed by Western Blotting as marker of BRAF activation. RESULTS: Three cell lines were discordant in the mutation detection (BRAF V600E at DNA level/Sanger sequencing and BRAF WT on RNA-seq). We initially postulated that those cell lines may express only the WT allele at the RNA level although mutated at the DNA level. A more careful analysis showed that they express low level of BRAF RNA and the expression may be in favor of the WT allele. We tested whether the discordant cell lines responded differently to BRAF-specific inhibitors. Their proliferation rate decreased after treatment with vemurafenib and PLX4720 but was not affected by sorafenib, suggesting a BRAF V600E biological behavior. Yet, responsiveness to the BRAF specific inhibitors was lower as compared to the control. Western Blot analysis revealed a decreased expression of p-ERK protein in the BRAF V600E control cell line and in the discordant cell lines upon treatment with BRAF-specific inhibitors. The discordant cell lines showed a lower responsiveness to BRAF inhibitors when compared to the BRAF V600E control cell line. The results obtained from the inhibition experiment and molecular analyses were also confirmed in three additional cell lines. CONCLUSION: Cell lines carrying V600E mutation at the DNA level may respond differently to BRAF targeted treatment potentially due to a lower V600E RNA expression.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Vemurafenib/farmacología
20.
Magn Reson Med ; 83(3): 806-814, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31502710

RESUMEN

PURPOSE: Reliable monitoring of tissue nicotinamide adenine dinucleotide (NAD+ ) concentration may provide insights on its roles in normal and pathological aging. In the present study, we report a 1 H MRS pulse sequence for the in vivo, localized 1 H MRS detection of NAD+ from the human brain. METHODS: Studies were carried out on a 7T Siemens MRI scanner using a 32-channel product volume coil. The pulse sequence consisted of a spectrally selective low bandwidth E-BURP-1 90° pulse. PRESS localization was achieved using optimized Shinnar-Le Roux 180° pulses and overlapping gradients were used to minimize the TE. The reproducibility of NAD+ quantification was measured in 11 healthy volunteers. The association of cerebral NAD+ with age was assessed in 16 healthy subjects 26-78 years old. RESULTS: Spectra acquired from a voxel placed in subjects' occipital lobe consisted of downfield peaks from the H2 , H4 , and H6 protons of the nicotinamide moiety of NAD+ between 8.9-9.35 ppm. The mean ± SD within-session and between-session coefficients of variation were found to be 6.14 ± 2.03% and 6.09 ± 3.20%, respectively. In healthy volunteers, an age-dependent decline of the NAD+ levels in the brain was also observed (ß = -1.24 µM/y, SE = 0.21, P < 0.001). CONCLUSION: We demonstrated the feasibility and robustness of a newly developed 1 H MRS technique to measure localized cerebral NAD+ at 7T MRI using a commercially available RF head coil. This technique may be further applied to detect and quantify NAD+ from different regions of the brain as well as from other tissues.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , NAD/química , Adulto , Factores de Edad , Anciano , Algoritmos , Líquido Cefalorraquídeo/diagnóstico por imagen , Femenino , Lóbulo Frontal/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Lóbulo Occipital/diagnóstico por imagen , Protones , Reproducibilidad de los Resultados , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA