Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Autoimmun ; 103: 102288, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31213399

RESUMEN

Despite the advances in the treatment of rheumatoid arthritis (RA) achieved in the last few years, several patients are diagnosed late, do not respond to or have to stop therapy because of inefficacy and/or toxicity, leaving still a huge unmet need. Tissue-specific strategies have the potential to address some of these issues. The aim of the study is the development of a safe nanotechnology approach for tissue-specific delivery of drugs and diagnostic probes. CD34 + endothelial precursors were addressed in inflamed synovium using targeted biodegradable nanoparticles (tBNPs). These nanostructures were made of poly-lactic acid, poly-caprolactone, and PEG and then coated with a synovial homing peptide. Immunofluorescence analysis clearly demonstrated their capacity to selectively address CD34 + endothelial cells in synovial tissue obtained from human, mouse, and rat. Biodistribution studies in two different animal models of rheumatoid arthritis (antigen-induced arthritis/AIA and collagen-induced arthritis/CIA) confirmed the selective accumulation in inflamed joints but also evidenced the capacity of tBNP to detect early phases of the disease and the preferential liver elimination. The therapeutic effect of methotrexate (MTX)-loaded tBNPs were studied in comparison with conventional MTX doses. MTX-loaded tBNPs prevented and treated CIA and AIA at a lower dose and reduced administration frequency than MTX. Moreover, MTX-loaded tBNP showed a novel mechanism of action, in which the particles target and kill CD34 + endothelial progenitors, preventing neo-angiogenesis and, consequently, synovial inflammation. tBNPs represent a stable and safe platform to develop highly-sensitive imaging and therapeutic approaches in RA targeting specifically synovial neo-angiogenesis to reduce local inflammation.


Asunto(s)
Artritis Reumatoide/terapia , Células Endoteliales/inmunología , Inflamación/terapia , Metotrexato/uso terapéutico , Nanopartículas/uso terapéutico , Membrana Sinovial/inmunología , Membrana Sinovial/patología , Animales , Antígenos CD34/metabolismo , Modelos Animales de Enfermedad , Humanos , Nanopartículas/química , Neovascularización Patológica , Poliésteres/química , Ratas , Ratas Wistar
2.
Neuroradiology ; 61(2): 163-173, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30377745

RESUMEN

PURPOSE: The discussed topic about gadolinium-based contrast agents (GBCA) safety has recently been revived due to the evidence of hyperintensities observed in the dentate nucleus (DN) and globus pallidus (GP) in the brain of patients with normal kidney function. Several preclinical studies have been conducted to understanding how the use of GBCAs can promote the gadolinium deposition in the brain. Here, we evaluate the impact of chronic cerebral hypoperfusion on gadolinium presence. METHODS: T1 hyperintensities and BBB integrity were evaluated by MRI in chronically hypoperfused and healthy rats injected with either gadodiamide or hypertonic saline. Additionally, the assessment of glucose metabolism by PET imaging and the gadolinium content by ICP-MS was performed after the last MR scan. RESULTS: Chronically hypoperfused rats displayed a greater MRI T1w signal in the DCN and hippocampus compared to Sham-operated animals, suggesting gadolinium accumulation. Dynamic contrast-enhanced (DCE) MRI assessment of BBB permeability revealed loss of integrity (high Ktrans) after rat injury in the dentate nuclei and hippocampus. Ex vivo tissue analysis showed greater gadolinium retention in the cerebellum and subcortical regions, supporting the imaging finding. FDG-PET imaging of the cerebellum did not reveal abnormal uptake in the DCN after chronic cerebral hypoperfusion. CONCLUSION: Higher signal intensity followed by higher Gd concentration observed in DCN and hippocampus of animals subjected to cerebral injury can be associated with an increase in BBB permeability due to the applied vascular dementia animal model. Nonetheless, no glucose metabolism abnormalities were detected in chronically hypoperfused cerebellum.


Asunto(s)
Núcleos Cerebelosos/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Medios de Contraste/administración & dosificación , Gadolinio DTPA/administración & dosificación , Glucosa/metabolismo , Hipocampo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Animales , Barrera Hematoencefálica/lesiones , Núcleos Cerebelosos/metabolismo , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Tomografía de Emisión de Positrones , Ratas , Ratas Wistar
3.
Dalton Trans ; 45(7): 3078-85, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26765955

RESUMEN

Three fluorescent asymmetric bis-urea receptors (L1-L3) have been synthesised. The binding properties of L1-L3 towards different anions (fluoride, acetate, hydrogencarbonate, dihydrogen phosphate, and hydrogen pyrophosphate HPpi(3-)) have been studied by means of (1)H-NMR, UV-Vis and fluorescence spectroscopy, single crystal X-ray diffraction, and theoretical calculations. In particular, a remarkable affinity for HPpi(3-) has been observed in the case L1 (DMSO-d6/0.5% H2O) which also acts as a fluorimetric chemosensor for this anion. Interestingly, when L1 is included in cetyltrimethylammonium (CTAB) micelles, hydrogen pyrophosphate recognition can also be achieved in pure water.


Asunto(s)
Difosfatos/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Urea/química , Agua/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Espectrometría de Fluorescencia , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA