Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Plasmid ; 78: 79-87, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25102058

RESUMEN

Antisense RNAs have long been known to regulate diverse aspects of plasmid biology. Here we review the FinOP system that modulates F plasmid gene expression through regulation of the F plasmid transcription factor, TraJ. FinOP is a two component system composed of an antisense RNA, FinP, which represses TraJ translation, and a protein, FinO, which is required to stabilize FinP and facilitate its interactions with its traJ mRNA target. We review the evidence that FinO acts as an RNA chaperone to bind and destabilize internal stem-loop structures within the individual RNAs that would otherwise block intermolecular RNA duplexing. Recent structural studies have provided mechanistic insights into how FinO may facilitate interactions between FinP and traJ mRNA. We also review recent findings that two other proteins, Escherichia coli ProQ and Neisseria meningitidis NMB1681, may represent FinO-like RNA chaperones.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Factor F/genética , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Regulación de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Conformación de Ácido Nucleico , ARN sin Sentido , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética
2.
Biochem Biophys Res Commun ; 378(3): 563-8, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19056346

RESUMEN

Ubiquitin conjugating enzyme variants (Uev) Uev1 and Mms2 share >90% sequence identity but with distinct biological functions. Here, we report the monomeric and heterodimeric crystal structures of Uev1 and comparison with that of Mms2. Uev1 alone or in complex with Ubc13 is nearly identical with the corresponding Mms2 structures, except in one surface area containing 7/14 amino acid variations. To probe the biological significance of this unique region, we raised monoclonal antibodies specifically recognizing this region of Uev1, but not of Mms2. Epitope mapping and site-specific mutagenesis revealed at least two distinct epitopes within this region. These data collectively suggest the existence of cellular proteins capable of distinguishing Uev1 from Mms2 and directing the Ubc13-Uev complex to different pathways.


Asunto(s)
Secuencia Conservada , Ligasas/química , Factores de Transcripción/química , Enzimas Ubiquitina-Conjugadoras/química , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Dimerización , Mapeo Epitopo , Humanos , Ligasas/genética , Ligasas/inmunología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Conformación Proteica , Eliminación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/inmunología
3.
J Mol Biol ; 429(22): 3409-3429, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28587922

RESUMEN

Cells are exposed to thousands of DNA damage events on a daily basis. This damage must be repaired to preserve genetic information and prevent development of disease. The most deleterious damage is a double-strand break (DSB), which is detected and repaired by mechanisms known as non-homologous end-joining (NHEJ) and homologous recombination (HR), which are components of the DNA damage response system. NHEJ is an error-prone first line of defense, whereas HR invokes error-free repair and is the focus of this review. The functions of the protein components of HR-driven DNA repair are regulated by the coordinated action of post-translational modifications including lysine acetylation, phosphorylation, ubiquitination, and SUMOylation. The latter two mechanisms are fundamental for recognition of DSBs and reorganizing chromatin to facilitate repair. We focus on the structures and molecular mechanisms for the protein components underlying synthesis, recognition, and cleavage of K63-linked ubiquitin chains, which are abundant at damage sites and obligatory for DSB repair. The forward flux of the K63-linked ubiquitination cascade is driven by the combined activity of E1 enzyme, the heterodimeric E2 Mms2-Ubc13, and its cognate E3 ligases RNF8 and RNF168, which is balanced through the binding and cleavage of chains by the deubiquitinase BRCC36, and the proteasome, and through the binding of chains by recognition modules on repair proteins such as RAP80. We highlight a number of aspects regarding our current understanding for the role of kinetics and dynamics in determining the function of the enzymes and chain recognition modules that drive K63 ubiquitination.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/metabolismo , Recombinación Homóloga , Lisina/metabolismo , Ubiquitinación , Eucariontes , Cinética
4.
J Mol Biol ; 426(22): 3783-3795, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25284757

RESUMEN

The conjugative transfer of bacterial F plasmids relies on TraM, a plasmid-encoded protein that recognizes multiple DNA sites to recruit the plasmid to the conjugative pore. In spite of the high degree of amino acid sequence conservation between TraM proteins, many of these proteins have markedly different DNA binding specificities that ensure the selective recruitment of a plasmid to its cognate pore. Here we present the structure of F TraM RHH (ribbon-helix-helix) domain bound to its sbmA site. The structure indicates that a pair of TraM tetramers cooperatively binds an underwound sbmA site containing 12 base pairs per turn. The sbmA is composed of 4 copies of a 5-base-pair motif, each of which is recognized by an RHH domain. The structure reveals that a single conservative amino acid difference in the RHH ß-ribbon between F and pED208 TraM changes its specificity for its cognate 5-base-pair sequence motif. Specificity is also dictated by the positioning of 2-base-pair spacer elements within sbmA; in F sbmA, the spacers are positioned between motifs 1 and 2 and between motifs 3 and 4, whereas in pED208 sbmA, there is a single spacer between motifs 2 and 3. We also demonstrate that a pair of F TraM tetramers can cooperatively bind its sbmC site with an affinity similar to that of sbmA in spite of a lack of sequence similarity between these DNA elements. These results provide a basis for the prediction of the DNA binding properties of the family of TraM proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factor F/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Factor F/química , Factor F/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
5.
Mol Biochem Parasitol ; 180(1): 1-7, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21821066

RESUMEN

Polynucleotide kinase/phosphatase (PNKP) is a bifunctional enzyme that can phosphorylate the 5'-OH termini and dephosphorylate the 3'-phosphate termini of DNA. It is a DNA repair enzyme involved in the processing of strand break termini, which permits subsequent repair proteins to replace missing nucleotides and rejoin broken strands. Little is known about DNA repair in Plasmodium falciparum, including the roles of PNKP in repairing parasite DNA. We identified a P. falciparum gene encoding a protein with 24% homology to human PNKP and thus suggestive of a putative PNKP. In this study, the PNKP gene of P. falciparum strain K1 (PfPNKP) was successfully cloned and expressed in E. coli as a GST-PfPNKP recombinant protein. MALDI-TOF/TOF analysis of the protein confirmed the identity of PfPNKP. Assays for enzymatic activity were carried out with a variety of single- and double-stranded substrates. Although 3'-phosphatase activity was detected, PfPNKP was observed to dephosphorylate single-stranded substrates or double-stranded substrates with a short 3'-single-stranded overhang, but not double-stranded substrates that mimicked single-strand breaks. We hypothesize that unlike human PNKP, PfPNKP may not be involved in single-strand break repair, since alternative terminal processing mechanisms can substitute for PfPNKP, and that PfPNKP DNA repair actions may be confined to overhanging termini of double-strand breaks.


Asunto(s)
Nucleotidasas/química , Nucleotidasas/metabolismo , Plasmodium falciparum/enzimología , Polinucleótido 5'-Hidroxil-Quinasa/química , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Secuencia de Aminoácidos , Estabilidad de Enzimas , Humanos , Datos de Secuencia Molecular , Nucleotidasas/genética , Plasmodium falciparum/química , Plasmodium falciparum/genética , Polinucleótido 5'-Hidroxil-Quinasa/genética , Estructura Terciaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato
6.
ACS Med Chem Lett ; 2(10): 764-767, 2011 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-22046493

RESUMEN

Breast cancer gene 1 carboxy terminus (BRCT) domains are found in a number of proteins that are important for DNA damage response (DDR). The BRCT domains bind phosphorylated proteins and these protein-protein interactions are essential for DDR and DNA repair. High affinity domain specific inhibitors are needed to facilitate the dissection of the protein-protein interactions in the DDR signaling. The BRCT domains of BRCA1 bind phosphorylated protein through a pSXXF consensus recognition motif. We identified a hydrophobic pocket at the P-1 position of the pSXXF binding site. Here we conducted a structure-guided synthesis of peptide analogs with hydrophobic functional groups at the P-1 position. Evaluation of these led to the identification of a peptide mimic 15 with a inhibitory constant (K(i)) of 40 nM for BRCT(BRCA1). Analysis of the TopBP1 and MDC1 BRCT domains suggests a similar approach is viable to design high affinity inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA