Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Genome Res ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468308

RESUMEN

Comparative analysis of genome-scale metabolic networks (GSMNs) may yield important information on the biology, evolution, and adaptation of species. However, it is impeded by the high heterogeneity of the quality and completeness of structural and functional genome annotations, which may bias the results of such comparisons. To address this issue, we developed AuCoMe, a pipeline to automatically reconstruct homogeneous GSMNs from a heterogeneous set of annotated genomes without discarding available manual annotations. We tested AuCoMe with three data sets, one bacterial, one fungal, and one algal, and showed that it successfully reduces technical biases while capturing the metabolic specificities of each organism. Our results also point out shared and divergent metabolic traits among evolutionarily distant algae, underlining the potential of AuCoMe to accelerate the broad exploration of metabolic evolution across the tree of life.

2.
Nucleic Acids Res ; 51(16): 8864-8879, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37503845

RESUMEN

Transcription factors, such as nuclear receptors achieve precise transcriptional regulation by means of a tight and reciprocal communication with DNA, where cooperativity gained by receptor dimerization is added to binding site sequence specificity to expand the range of DNA target gene sequences. To unravel the evolutionary steps in the emergence of DNA selection by steroid receptors (SRs) from monomeric to dimeric palindromic binding sites, we carried out crystallographic, biophysical and phylogenetic studies, focusing on the estrogen-related receptors (ERRs, NR3B) that represent closest relatives of SRs. Our results, showing the structure of the ERR DNA-binding domain bound to a palindromic response element (RE), unveil the molecular mechanisms of ERR dimerization which are imprinted in the protein itself with DNA acting as an allosteric driver by allowing the formation of a novel extended asymmetric dimerization region (KR-box). Phylogenetic analyses suggest that this dimerization asymmetry is an ancestral feature necessary for establishing a strong overall dimerization interface, which was progressively modified in other SRs in the course of evolution.


Asunto(s)
ADN , Factores de Transcripción , Factores de Transcripción/metabolismo , Dimerización , Filogenia , ADN/genética , ADN/metabolismo , Sitios de Unión , Receptores de Estrógenos/genética
3.
Plant J ; 116(6): 1617-1632, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37658798

RESUMEN

In the marine environment, distance signaling based on water-borne cues occurs during interactions between macroalgae and herbivores. In the brown alga Laminaria digitata from North-Atlantic Brittany, oligoalginates elicitation or grazing was shown to induce chemical and transcriptomic regulations, as well as emission of a wide range of volatile aldehydes, but their biological roles as potential defense or warning signals in response to herbivores remain unknown. In this context, bioassays using the limpet Patella pellucida and L. digitata were carried out for determining the effects of algal transient incubation with 4-hydroxyhexenal (4-HHE), 4-hydroxynonenal (4-HNE) and dodecadienal on algal consumption by grazers. Simultaneously, we have developed metabolomic and transcriptomic approaches to study algal molecular responses after treatments of L. digitata with these chemical compounds. The results indicated that, unlike the treatment of the plantlets with 4-HNE or dodecadienal, treatment with 4-HHE decreases algal consumption by herbivores at 100 ng.ml-1 . Moreover, we showed that algal metabolome was significantly modified according to the type of aldehydes, and more specifically the metabolite pathways linked to fatty acid degradation. RNAseq analysis further showed that 4-HHE at 100 ng.ml-1 can activate the regulation of genes related to oxylipin signaling pathways and specific responses, compared to oligoalginates elicitation. As kelp beds constitute complex ecosystems consisting of habitat and food source for marine herbivores, the algal perception of specific aldehydes leading to targeted molecular regulations could have an important biological role on kelps/grazers interactions.


Asunto(s)
Ecosistema , Kelp , Aldehídos/farmacología , Percepción
4.
PLoS Genet ; 17(4): e1009492, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33882063

RESUMEN

Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors.


Asunto(s)
Desarrollo Embrionario/genética , Receptores Citoplasmáticos y Nucleares/ultraestructura , Receptores X Retinoide/genética , Factores de Transcripción/ultraestructura , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Dimerización , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Ligandos , Regiones Promotoras Genéticas/genética , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Receptores X Retinoide/ultraestructura , Factores de Transcripción/química , Factores de Transcripción/genética
5.
BMC Biol ; 20(1): 217, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199108

RESUMEN

BACKGROUND: Nuclear receptors are transcription factors of central importance in human biology and associated diseases. Much of the knowledge related to their major functions, such as ligand and DNA binding or dimerization, derives from functional studies undertaken in classical model animals. It has become evident, however, that a deeper understanding of these molecular functions requires uncovering how these characteristics originated and diversified during evolution, by looking at more species. In particular, the comprehension of how dimerization evolved from ancestral homodimers to a more sophisticated state of heterodimers has been missing, due to a too narrow phylogenetic sampling. Here, we experimentally and phylogenetically define the evolutionary trajectory of nuclear receptor dimerization by analyzing a novel NR7 subgroup, present in various metazoan groups, including cnidarians, annelids, mollusks, sea urchins, and amphioxus, but lost in vertebrates, arthropods, and nematodes. RESULTS: We focused on NR7 of the cephalochordate amphioxus B. lanceolatum. We present a complementary set of functional, structural, and evolutionary analyses that establish that NR7 lies at a pivotal point in the evolutionary trajectory from homodimerizing to heterodimerizing nuclear receptors. The crystal structure of the NR7 ligand-binding domain suggests that the isolated domain is not capable of dimerizing with the ubiquitous dimerization partner RXR. In contrast, the full-length NR7 dimerizes with RXR in a DNA-dependent manner and acts as a constitutively active receptor. The phylogenetic and sequence analyses position NR7 at a pivotal point, just between the basal class I nuclear receptors that form monomers or homodimers on DNA and the derived class II nuclear receptors that exhibit the classical DNA-independent RXR heterodimers. CONCLUSIONS: Our data suggest that NR7 represents the "missing link" in the transition between class I and class II nuclear receptors and that the DNA independency of heterodimer formation is a feature that was acquired during evolution. Our studies define a novel paradigm of nuclear receptor dimerization that evolved from DNA-dependent to DNA-independent requirements. This new concept emphasizes the importance of DNA in the dimerization of nuclear receptors, such as the glucocorticoid receptor and other members of this pharmacologically important oxosteroid receptor subfamily. Our studies further underline the importance of studying emerging model organisms for supporting cutting-edge research.


Asunto(s)
Receptores de Glucocorticoides , Receptores de Ácido Retinoico , Animales , ADN , Dimerización , Humanos , Cetosteroides , Ligandos , Filogenia , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Glucocorticoides/genética , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/química , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo
6.
Planta ; 249(3): 647-661, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30341489

RESUMEN

MAIN CONCLUSION: Comparative genomic analysis of cytochromes P450 revealed high diversification and dynamic changes in stramenopiles, associated with transcriptional responsiveness to various environmental stimuli. Comparative genomic and molecular evolution approaches were used to characterize cytochromes P450 (P450) diversity in stramenopiles. Phylogenetic analysis pointed to a high diversity of P450 in stramenopiles and identified three major clans. The CYP51 and CYP97 clans were present in brown algae, diatoms and Nannochloropsis gaditana, whereas the CYP5014 clan mainly includes oomycetes. Gene gain and loss patterns revealed that six CYP families-CYP51, CYP97, CYP5160, CYP5021, CYP5022, and CYP5165-predated the split of brown algae and diatoms. After they diverged, diatoms gained more CYP families, especially in the cold-adapted species Fragilariopsis cylindrus, in which eight new CYP families were found. Selection analysis revealed that the expanded CYP51 family in the brown alga Cladosiphon okamuranus exhibited a more relaxed selection constraint compared with those of other brown algae and diatoms. Our RNA-seq data further evidenced that most of P450s in Saccharina japonica are highly expressed in large sporophytes, which could potentially promote the large kelp formation in this developmental stage. A survey of Ectocarpus siliculosus and diatom transcriptomes showed that many P450s are responsive to stress, nutrient limitation or light quality, suggesting pivotal roles in detoxification or metabolic processes under adverse environmental conditions. The information provided in this study will be helpful in designing functional experiments and interpreting P450 roles in this particular lineage.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Evolución Molecular , Variación Genética/genética , Estramenopilos/genética , Genómica , Phaeophyceae/enzimología , Phaeophyceae/genética , Filogenia , Alineación de Secuencia , Estramenopilos/enzimología , Transcriptoma
7.
PLoS Comput Biol ; 14(5): e1006146, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29791443

RESUMEN

Genome-scale metabolic models have become the tool of choice for the global analysis of microorganism metabolism, and their reconstruction has attained high standards of quality and reliability. Improvements in this area have been accompanied by the development of some major platforms and databases, and an explosion of individual bioinformatics methods. Consequently, many recent models result from "à la carte" pipelines, combining the use of platforms, individual tools and biological expertise to enhance the quality of the reconstruction. Although very useful, introducing heterogeneous tools, that hardly interact with each other, causes loss of traceability and reproducibility in the reconstruction process. This represents a real obstacle, especially when considering less studied species whose metabolic reconstruction can greatly benefit from the comparison to good quality models of related organisms. This work proposes an adaptable workspace, AuReMe, for sustainable reconstructions or improvements of genome-scale metabolic models involving personalized pipelines. At each step, relevant information related to the modifications brought to the model by a method is stored. This ensures that the process is reproducible and documented regardless of the combination of tools used. Additionally, the workspace establishes a way to browse metabolic models and their metadata through the automatic generation of ad-hoc local wikis dedicated to monitoring and facilitating the process of reconstruction. AuReMe supports exploration and semantic query based on RDF databases. We illustrate how this workspace allowed handling, in an integrated way, the metabolic reconstructions of non-model organisms such as an extremophile bacterium or eukaryote algae. Among relevant applications, the latter reconstruction led to putative evolutionary insights of a metabolic pathway.


Asunto(s)
Bases de Datos Factuales , Genómica , Almacenamiento y Recuperación de la Información , Internet , Redes y Vías Metabólicas/genética , Antioxidantes/metabolismo , Genómica/métodos , Genómica/normas , Almacenamiento y Recuperación de la Información/métodos , Almacenamiento y Recuperación de la Información/normas , Microalgas/genética , Microalgas/metabolismo , Modelos Teóricos , Reproducibilidad de los Resultados
8.
Mol Biol Evol ; 34(7): 1644-1653, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333289

RESUMEN

Phenotypic plasticity is increasingly recognized to facilitate adaptive change in plants and animals, including insects, nematodes, and vertebrates. Plasticity can occur as continuous or discrete (polyphenisms) variation. In social insects, for example, in ants, some species have workers of distinct size classes while in other closely related species variation in size may be continuous. Despite the abundance of examples in nature, how discrete morphs are specified remains currently unknown. In theory, polyphenisms might require robustness, whereby the distribution of morphologies would be limited by the same mechanisms that execute buffering from stochastic perturbations, a function attributed to heat-shock proteins of the Hsp90 family. However, this possibility has never been directly tested because plasticity and robustness are considered to represent opposite evolutionary principles. Here, we used a polyphenism of feeding structures in the nematode Pristionchus pacificus to test the relationship between robustness and plasticity using geometric morphometrics of 20 mouth-form landmarks. We show that reducing heat-shock protein activity, which reduces developmental robustness, increases the range of mouth-form morphologies. Specifically, elevated temperature led to a shift within morphospace, pharmacological inhibition of all Hsp90 genes using radicicol treatment increased shape variability in both mouth-forms, and CRISPR/Cas9-induced Ppa-daf-21/Hsp90 knockout had a combined effect. Thus, Hsp90 canalizes the morphologies of plastic traits resulting in discrete polyphenism of mouth-forms.


Asunto(s)
Plasticidad de la Célula/fisiología , Proteínas HSP90 de Choque Térmico/fisiología , Nematodos/fisiología , Animales , Evolución Biológica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Plasticidad de la Célula/genética , Ambiente , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Boca/metabolismo , Nematodos/genética , Fenotipo
9.
Gen Comp Endocrinol ; 265: 41-45, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29908834

RESUMEN

Hormonally active phytochemicals (HAPs) are signaling molecules produced by plants that alter hormonal signaling in animals, due to consumption or environmental exposure. To date, HAPs have been investigated mainly in terrestrial ecosystems. To gain a full understanding of the origin and evolution of plant-animal interactions, it is necessary also to study these interactions in the marine environment, where the major photosynthetic lineages are very distant from the terrestrial plants. Here we focus on chemicals from red and brown macroalgae and point out their potential role as modulators of the endocrine system of aquatic animals through nuclear hormone receptors. We show that, regarding steroids and oxylipins, there are already some candidates available for further functional investigations of ligand-receptor interactions. Furthermore, several carotenoids, produced by cyanobacteria provide candidates that could be investigated with respect to their presence in macroalgae. Finally, regarding halogenated compounds, it is not clear yet which molecules could bridge the gap to explain the transition from lipid sensing to thyroid hormone high affinity binding among nuclear receptors.


Asunto(s)
Organismos Acuáticos/metabolismo , Fitoquímicos/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Algas Marinas/química , Animales , Organismos Acuáticos/efectos de los fármacos , Ecosistema , Ligandos , Modelos Animales , Fitoquímicos/química
10.
Mol Biol Evol ; 33(10): 2506-14, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27189572

RESUMEN

Small-molecule signaling in nematode dauer formation has emerged as a major model to study chemical communication in development and evolution. Developmental arrest as nonfeeding and stress-resistant dauer larvae represents the major survival and dispersal strategy. Detailed studies in Caenorhabditis elegans and Pristionchus pacificus revealed that small-molecule communication changes rapidly in evolution resulting in extreme structural diversity of small-molecule compounds. In C. elegans, a blend of ascarosides constitutes the dauer pheromone, whereas the P. pacificus dauer pheromone includes additional paratosides and integrates building blocks from diverse primary metabolic pathways. Despite this complexity of small-molecule structures and functions, little is known about the biosynthesis of small molecules in nematodes outside C. elegans Here, we show that the genes encoding enzymes of the peroxisomal ß-oxidation pathway involved in small-molecule biosynthesis evolve rapidly, including gene duplications and domain switching. The thiolase daf-22, the most downstream factor in C. elegans peroxisomal ß-oxidation, has duplicated in P. pacificus, resulting in Ppa-daf-22.1, which still contains the sterol-carrier-protein (SCP) domain that was lost in C. elegans daf-22, and Ppa-daf-22.2. Using the CRISPR/Cas9 system, we induced mutations in both P. pacificus daf-22 genes and identified an unexpected complexity of functional conservation and divergence. Under well-fed conditions, ascaroside biosynthesis proceeds exclusively via Ppa-daf-22.1 In contrast, starvation conditions induce Ppa-daf-22.2 activity, resulting in the production of a specific subset of ascarosides. Gene expression studies indicate a reciprocal up-regulation of both Ppa-daf-22 genes, which is, however, independent of starvation. Thus, our study reveals an unexpected functional complexity of dauer development and evolution.


Asunto(s)
Caenorhabditis elegans/genética , Rabdítidos/genética , Animales , Evolución Biológica , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia Conservada , Evolución Molecular , Glucolípidos/metabolismo , Larva/genética , Redes y Vías Metabólicas , Feromonas/metabolismo , Rabdítidos/metabolismo , Transducción de Señal , Especificidad de la Especie , Compuestos de Sulfhidrilo/metabolismo
11.
BMC Evol Biol ; 15: 185, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26370559

RESUMEN

BACKGROUND: The development of multicellular organisms is accompanied by gene expression changes in differentiating cells. Profiling stage-specific expression during development may reveal important insights into gene sets that contributed to the morphological diversity across the animal kingdom. RESULTS: We sequenced RNA-seq libraries throughout a developmental timecourse of the nematode Pristionchus pacificus. The transcriptomes reflect early larval stages, adult worms including late larvae, and growth-arrested dauer larvae and allowed the identification of developmentally regulated gene clusters. Our data reveals similar trends as previous transcriptome profiling of dauer worms and represents the first expression data for early larvae in P. pacificus. Gene expression clusters characterizing early larval stages show most significant enrichments of chaperones, while collagens are most significantly enriched in transcriptomes of late larvae and adult worms. By combining expression data with phylogenetic analysis, we found that developmentally regulated genes are found in paralogous clusters that have arisen through lineage-specific duplications after the split from the Caenorhabditis elegans branch. CONCLUSIONS: We propose that gene duplications of developmentally regulated genes represent a plausible evolutionary mechanism to increase the dosage of stage-specific expression. Consequently, this may contribute to the substantial divergence in expression profiles that has been observed across larger evolutionary time scales.


Asunto(s)
Duplicación de Gen , Nematodos/genética , Animales , Evolución Biológica , Caenorhabditis elegans/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Larva/crecimiento & desarrollo , Familia de Multigenes , Nematodos/crecimiento & desarrollo , Filogenia
12.
J Mol Evol ; 80(1): 18-36, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25323991

RESUMEN

Homology is a fundamental concept in comparative biology and a crucial tool for the analysis of character distribution. Introduced by Owen in 1843 (Lectures on comparative anatomy and physiology of the invertebrate animals, Longman, Brown, Green and Longman, London) in a morphological context, homology can similarly be applied to protein-coding genes. However, in molecular biology the proper distinction between orthology and paralogy was long limited by the absence of whole-genome sequencing data. By now, genome-wide sequencing allows comprehensive analyses of the homology of genes and gene families at the level of an entire phylum. Here, we analyze a manually curated dataset of more than 2,000 proteins from the genomes of 11 nematode species of seven different genera, including free-living and animal and plant parasites to study the principles of homology assignments in gene families. Using all sequenced species as an extensive outgroup, we specifically focus on the two model species Caenorhabditis elegans and Pristionchus pacificus and compare enzymes involved in detoxification of xenobiotics and synthesis of fatty acids. We find that only a small proportion of genes in these families are one-to-one orthologs and that their history is shaped by massive duplication events. Of a total of 349 and 528 genes from C. elegans and P. pacificus, respectively, only 39 are one-to-one orthologs. Thus, frequent amplifications and losses are a widespread phenomenon in nematode lineages. We also report variation in birth and death rates depending on gene families and nematode lineages. Finally, we discuss the consequence of the near absence of one-to-one orthology in related organisms for the application of the homology concept to protein-coding genes in the era of whole-genome sequencing data.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas del Helminto/genética , Familia de Multigenes , Nematodos/genética , Homología de Secuencia de Aminoácido , Animales , Proteínas de Caenorhabditis elegans/química , Evolución Molecular , Proteínas del Helminto/química , Filogenia
13.
Front Plant Sci ; 15: 1339132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357267

RESUMEN

Metabolic pathway drift has been formulated as a general principle to help in the interpretation of comparative analyses between biosynthesis pathways. Indeed, such analyses often indicate substantial differences, even in widespread pathways that are sometimes believed to be conserved. Here, our purpose is to check how much this interpretation fits to empirical data gathered in the field of plant and algal biosynthesis pathways. After examining several examples representative of the diversity of lipid biosynthesis pathways, we explain why it is important to compare closely related species to gain a better understanding of this phenomenon. Furthermore, this comparative approach brings us to the question of how much biotic interactions are responsible for shaping this metabolic plasticity. We end up introducing some model systems that may be promising for further exploration of this question.

14.
Prog Lipid Res ; 96: 101290, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094698

RESUMEN

Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.

15.
Mol Biol Evol ; 28(7): 2125-37, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21297158

RESUMEN

The human nuclear retinoic acid (RA) receptor alpha (hRARα) is a ligand-dependent transcriptional regulator, which is controlled by a phosphorylation cascade. The cascade starts with the RA-induced phosphorylation of a serine residue located in the ligand-binding domain, S(LBD), allowing the recruitment of the cdk7/cyclin H/MAT1 subcomplex of TFIIH through the docking of cyclin H. It ends by the subsequent phosphorylation by cdk7 of an other serine located in the N-terminal domain, S(NTD). Here, we show that this cascade relies on an increase in the flexibility of the domain involved in cyclin H binding, subsequently to the phosphorylation of S(LBD). Owing to the functional importance of RARα in several vertebrate species, we investigated whether the phosphorylation cascade was conserved in zebrafish (Danio rerio), which expresses two RARα genes: RARα-A and RARα-B. We found that in zebrafish RARαs, S(LBD) is absent, whereas S(NTD) is conserved and phosphorylated. Therefore, we analyzed the pattern of conservation of the phosphorylation sites and traced back their evolution. We found that S(LBD) is most often absent outside mammalian RARα and appears late during vertebrate evolution. In contrast, S(NTD) is conserved, indicating that the phosphorylation of this functional site has been under ancient high selection constraint. This suggests that, during evolution, different regulatory circuits control RARα activity.


Asunto(s)
Evolución Molecular , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/genética , Serina/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Dominio Catalítico , Chlorocebus aethiops , Ciclina H/química , Ciclina H/metabolismo , Humanos , Immunoblotting , Ratones , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Fosforilación , Filogenia , Prolina , Receptores de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Alineación de Secuencia , Pez Cebra
16.
Proc Natl Acad Sci U S A ; 106(29): 11913-8, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19571007

RESUMEN

Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specific family of ligand-activated transcription factors. The main steps controlling the diversification of this family are now well-understood. In contrast, the origin and evolution of steroid ligands remain mysterious, although this is crucial for understanding the emergence of modern endocrine systems. Using a comparative genomic approach, we analyzed complete metazoan genomes to provide a comprehensive view of the evolution of major enzymatic players implicated in steroidogenesis at the whole metazoan scale. Our analysis reveals that steroidogenesis has been independently elaborated in the 3 main bilaterian lineages, and that steroidogenic cytochrome P450 enzymes descended from those that detoxify xenobiotics.


Asunto(s)
Evolución Molecular , Hormonas/metabolismo , Transducción de Señal , Esteroides/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/genética , Duplicación de Gen , Ligandos , Funciones de Verosimilitud , Modelos Genéticos , Oxidorreductasas/genética , Filogenia , Especificidad de la Especie , Vertebrados/genética
17.
Curr Biol ; 32(3): R100-R105, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35134351

RESUMEN

The functional evolution of ancient proteins has recently been reconstructed using molecular phylogeny, and the activity of the deduced molecules can be tested. Unfortunately, the world of small molecules escapes such 'resurrection' studies, which rely on ancestral sequence reconstruction. These studies implicitly assume that only the proteins evolve, whereas the small molecules are presumed to be identical now and in the past. Recent evolutionary analysis of biochemical pathways, however, as well as the impressive surge of metabolomics are changing this situation, and it is becoming possible to reconstruct ancient biochemical pathways. We can now begin to infer the chemical structures of key molecules that were present in the past, synthesize those molecules, and test their ability to interact with their cognate (ancient) protein partners. In this essay, we discuss the possibilities offered by these new methodological developments and provide key examples. We also highlight four principles that are important to consider when studying the evolution of small molecules: catalytic promiscuity, metabolic reconfiguration, coevolution and bidirectional interactions. These new developments call for an alliance between organic chemists and evolutionary scientists to investigate the diversity of the chemical building blocks of life, and the evolution of their biosynthetic pathways.


Asunto(s)
Evolución Molecular , Proteínas , Filogenia , Proteínas/genética
18.
Front Genet ; 12: 811993, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35186015

RESUMEN

Myeloblastosis (MYB) proteins represent one of the largest families of eukaryotic transcription factors and regulate important processes in growth and development. Studies on MYBs have mainly focused on animals and plants; however, comprehensive analysis across other supergroups such as SAR (stramenopiles, alveolates, and rhizarians) is lacking. This study characterized the structure, evolution, and expression of MYBs in four brown algae, which comprise the biggest multicellular lineage of SAR. Subfamily 1R-MYB comprised heterogeneous proteins, with fewer conserved motifs found outside the MYB domain. Unlike the SHAQKY subgroup of plant 1R-MYB, THAQKY comprised the largest subgroup of brown algal 1R-MYBs. Unlike the expansion of 2R-MYBs in plants, brown algae harbored more 3R-MYBs than 2R-MYBs. At least ten 2R-MYBs, fifteen 3R-MYBs, and one 6R-MYB orthologs existed in the common ancestor of brown algae. Phylogenetic analysis showed that brown algal MYBs had ancient origins and a diverged evolution. They showed strong affinity with stramenopile species, while not with red algae, green algae, or animals, suggesting that brown algal MYBs did not come from the secondary endosymbiosis of red and green plastids. Sequence comparison among all repeats of the three types of MYB subfamilies revealed that the repeat of 1R-MYBs showed higher sequence identity with the R3 of 2R-MYBs and 3R-MYBs, which supports the idea that 1R-MYB was derived from loss of the first and second repeats of the ancestor MYB. Compared with other species of SAR, brown algal MYB proteins exhibited a higher proportion of intrinsic disordered regions, which might contribute to multicellular evolution. Expression analysis showed that many MYB genes are responsive to different stress conditions and developmental stages. The evolution and expression analyses provided a comprehensive analysis of the phylogeny and functions of MYBs in brown algae.

19.
Front Plant Sci ; 12: 648426, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33986764

RESUMEN

Sterols are biologically important molecules that serve as membrane fluidity regulators and precursors of signaling molecules, either endogenous or involved in biotic interactions. There is currently no model of their biosynthesis pathways in brown algae. Here, we benefit from the availability of genome data and gas chromatography-mass spectrometry (GC-MS) sterol profiling using a database of internal standards to build such a model. We expand the set of identified sterols in 11 species of red, brown, and green macroalgae and integrate these new data with genomic data. Our analyses suggest that some metabolic reactions may be conserved despite the loss of canonical eukaryotic enzymes, like the sterol side-chain reductase (SSR). Our findings are consistent with the principle of metabolic pathway drift through enzymatic replacement and show that cholesterol synthesis from cycloartenol may be a widespread but variable pathway among chlorophyllian eukaryotes. Among the factors contributing to this variability, one could be the recruitment of cholesterol biosynthetic intermediates to make signaling molecules, such as the mozukulins. These compounds were found in some brown algae belonging to Ectocarpales, and we here provide a first mozukulin biosynthetic model. Our results demonstrate that integrative approaches can already be used to infer experimentally testable models, which will be useful to further investigate the biological roles of those newly identified algal pathways.

20.
Nat Commun ; 11(1): 3454, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651383

RESUMEN

Biological rhythms are a fundamental property of life. The deep ocean covers 66% of our planet surface and is one of the largest biomes. The deep sea has long been considered as an arrhythmic environment because sunlight is totally absent below 1,000 m depth. In the present study, we have sequenced the temporal transcriptomes of a deep-sea species, the ecosystem-structuring vent mussel Bathymodiolus azoricus. We reveal that tidal cycles predominate in the transcriptome and physiology of mussels fixed directly at hydrothermal vents at 1,688 m depth at the Mid-Atlantic Ridge, whereas daily cycles prevail in mussels sampled after laboratory acclimation. We identify B. azoricus canonical circadian clock genes, and show that oscillations observed in deep-sea mussels could be either a direct response to environmental stimulus, or be driven endogenously by one or more biological clocks. This work generates in situ insights into temporal organisation in a deep-sea organism.


Asunto(s)
Mytilidae/fisiología , Animales , Ecosistema , Respiraderos Hidrotermales , Biología Marina , Periodicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA