Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139025

RESUMEN

"Heptil" (unsymmetrical dimethylhydrazine-UDMH) is extensively employed worldwide as a propellant for rocket engines. However, UDMH constantly loses its properties as a result of its continuous and uncontrolled absorption of moisture, which cannot be rectified. This situation threatens its long-term usability. UDMH is an exceedingly toxic compound (Hazard Class 1), which complicates its transportation and disposal. Incineration is currently the only method used for its disposal, but this process generates oxidation by-products that are even more toxic than the original UDMH. A more benign approach involves its immediate reaction with a formalin solution to form 1,1-dimethyl-2-methylene hydrazone (MDH), which is significantly less toxic by an order of magnitude. MDH can then be polymerized under acidic conditions, and the resulting product can be burned, yielding substantial amounts of nitrogen oxides. This review seeks to shift the focus of MDH from incineration towards its application in the synthesis of relatively non-toxic and readily available analogs of various pharmaceutical substances. We aim to bring the attention of the international chemical community to the distinctive properties of MDH, as well as other hydrazones (such as glyoxal, acrolein, crotonal, and meta-crolyl), wherein each structural fragment can initiate unique transformations that have potential applications in molecular design, pharmaceutical research, and medicinal chemistry.


Asunto(s)
Acroleína , Glioxal , Dimetilhidrazinas/química , Formaldehído , Técnicas de Química Sintética
2.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047842

RESUMEN

Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear. In particular, which ionic state of dioxetanone intermediate decomposes to yield a coelenteramide in an excited state and the role of the water molecule residing in a proximity to the N1 atom of 2-hydroperoxycoelenterazine in the bioluminescence reaction are still under discussion. With the aim to elucidate the function of this water molecule as well as to pinpoint the amino acid residues presumably involved in the protonation of the primarily formed dioxetanone anion, we constructed a set of single and double obelin and aequorin mutants with substitutions of His, Trp, Tyr, and Ser to residues with different properties of side chains and investigated their bioluminescence properties (specific activity, bioluminescence spectra, stopped-flow kinetics, and fluorescence spectra of Ca2+-discharged photoproteins). Moreover, we determined the spatial structure of the obelin mutant with a substitution of His64, the key residue of the presumable proton transfer, to Phe. On the ground of the bioluminescence properties of the obelin and aequorin mutants as well as the spatial structures of the obelin mutants with the replacements of His64 and Tyr138, the conclusion was made that, in fact, His residue of the Tyr-His-Trp triad and the water molecule perform the "catalytic function" by transferring the proton from solvent to the dioxetanone anion to generate its neutral ionic state in complex with water, as only the decomposition of this form of dioxetanone can provide the highest light output in the light-emitting reaction of the hydromedusan photoproteins.


Asunto(s)
Aequorina , Protones , Aequorina/genética , Aequorina/química , Agua , Conformación Proteica , Proteínas Luminiscentes/metabolismo , Mutagénesis , Calcio/metabolismo , Mediciones Luminiscentes
3.
Xenobiotica ; 51(2): 222-238, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33078965

RESUMEN

Dilated cardiomyopathy (DCM) is a disease of the myocardium defined by left ventricular enlargement and systolic dysfunction leading to heart failure. Danicamtiv, a new targeted myosin activator designed for the treatment of DCM, was characterised in in vitro and in vivo preclinical studies. Danicamtiv human hepatic clearance was predicted to be 0.5 mL/min/kg from in vitro metabolic stability studies in human hepatocytes. For human, plasma protein binding was moderate with a fraction unbound of 0.16, whole blood-to-plasma partitioning ratio was 0.8, and danicamtiv showed high permeability and no efflux in a Caco-2 cell line. Danicamtiv metabolism pathways in vitro included CYP-mediated amide-cleavage, N-demethylation, as well as isoxazole- and piperidine-ring-opening. Danicamtiv clearance in vivo was low across species with 15.5, 15.3, 1.6, and 5.7 mL/min/kg in mouse, rat, dog, and monkey, respectively. Volume of distribution ranged from 0.24 L/kg in mouse to 1.7 L/kg in rat. Oral bioavailability ranged from 26% in mouse to 108% in dog. Simple allometric scaling prediction of human plasma clearance, volume of distribution, and half-life was 0.64 mL/min/kg, 0.98 L/kg, and 17.7 h, respectively. Danicamtiv preclinical attributes and predicted human pharmacokinetics supported advancement toward clinical development.


Asunto(s)
Cardiomiopatía Dilatada/tratamiento farmacológico , Animales , Disponibilidad Biológica , Células CACO-2 , Perros , Hepatocitos , Humanos , Masculino , Ratones , Microsomas Hepáticos , Miosinas , Unión Proteica , Ratas
4.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32674504

RESUMEN

Bioluminescent proteins are widely used as reporter molecules in various in vitro and in vivo assays. The smallest isoform of Metridia luciferase (MLuc7) is a highly active, naturally secreted enzyme which, along with other luciferase isoforms, is responsible for the bright bioluminescence of marine copepod Metridia longa. In this study, we report the construction of two variants of a hybrid protein consisting of MLuc7 and 14D5a single-chain antibody to the surface glycoprotein E of tick-borne encephalitis virus as a model fusion partner. We demonstrate that, whereas fusion of a single-chain antibody to either N- or C-terminus of MLuc7 does not affect its bioluminescence properties, the binding site on the single-chain antibody influences its binding capacity. The affinity of 14D5a-MLuc7 hybrid protein (KD = 36.2 nM) where the C-terminus of the single-chain antibody was fused to the N-terminus of MLuc7, appeared to be 2.5-fold higher than that of the reverse, MLuc7-14D5a (KD = 87.6 nM). The detection limit of 14D5a-MLuc7 hybrid protein was estimated to be 45 pg of the recombinant glycoprotein E. Although the smallest isoform of M. longa luciferase was tested as a fusion partner only with a single-chain antibody, it is reasonable to suppose that MLuc7 can also be successfully used as a partner for genetic fusion with other proteins.


Asunto(s)
Copépodos/genética , Luciferasas/genética , Isoformas de Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Animales , Clonación Molecular/métodos , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Glicoproteínas/genética , Mediciones Luminiscentes/métodos , Anticuerpos de Cadena Única/genética
5.
J Hepatol ; 71(4): 660-665, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31195062

RESUMEN

BACKGROUND & AIMS: Although off-label use of sofosbuvir-containing regimens occurs regularly in patients with hepatitis C virus (HCV) infection undergoing dialysis for severe renal impairment or end-stage renal disease (ESRD), these regimens are not licensed for this indication, and there is an absence of dosing recommendations in this population. This study evaluated the safety and efficacy of sofosbuvir/velpatasvir in patients with HCV infection with ESRD undergoing dialysis. METHODS: In this phase II, single-arm study, 59 patients with genotype 1-6 HCV infection with ESRD undergoing hemodialysis or peritoneal dialysis received open-label sofosbuvir/velpatasvir (400 mg/100 mg) once daily for 12 weeks. Patients were HCV treatment naive or treatment experienced without cirrhosis or with compensated cirrhosis. Patients previously treated with any HCV NS5A inhibitor were not eligible. The primary efficacy endpoint was the proportion of patients achieving sustained virologic response (SVR) 12 weeks after discontinuation of treatment (SVR12). The primary safety endpoint was the proportion of patients who discontinued study drug due to adverse events. RESULTS: Overall, 56 of 59 patients achieved SVR12 (95%; 95% CI 86-99%). Of the 3 patients who did not achieve SVR12, 2 patients had virologic relapse determined at post-treatment Week 4 (including 1 who prematurely discontinued study treatment), and 1 patient died from suicide after achieving SVR through post-treatment Week 4. The most common adverse events were headache (17%), fatigue (14%), nausea (14%), and vomiting (14%). Serious adverse events were reported for 11 patients (19%), and all were deemed to be unrelated to sofosbuvir/velpatasvir. CONCLUSIONS: Treatment with sofosbuvir/velpatasvir for 12 weeks was safe and effective in patients with ESRD undergoing dialysis. LAY SUMMARY: Sofosbuvir/velpatasvir is a combination direct-acting antiviral that is approved for treatment of patients with hepatitis C virus (HCV) infection. Despite the lack of dosing recommendations, sofosbuvir-containing regimens (including sofosbuvir/velpatasvir) are frequently used for HCV-infected patients undergoing dialysis. This study evaluated the safety and efficacy of sofosbuvir/velpatasvir for 12 weeks in patients with HCV infection who were undergoing dialysis. Treatment with sofosbuvir/velpatasvir was safe and well tolerated, resulting in a cure rate of 95% in patients with HCV infection and end-stage renal disease. Clinical Trial Number: NCT03036852.


Asunto(s)
Carbamatos , Hepatitis C Crónica , Compuestos Heterocíclicos de 4 o más Anillos , Fallo Renal Crónico , Diálisis Renal/métodos , Sofosbuvir , Antivirales/administración & dosificación , Antivirales/efectos adversos , Carbamatos/administración & dosificación , Carbamatos/efectos adversos , Combinación de Medicamentos , Monitoreo de Drogas/métodos , Femenino , Hepacivirus/genética , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/virología , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Compuestos Heterocíclicos de 4 o más Anillos/efectos adversos , Humanos , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/terapia , Cirrosis Hepática/diagnóstico , Masculino , Persona de Mediana Edad , Sofosbuvir/administración & dosificación , Sofosbuvir/efectos adversos , Respuesta Virológica Sostenida , Resultado del Tratamiento
6.
Xenobiotica ; 49(6): 718-733, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30044681

RESUMEN

Mavacamten is a small molecule modulator of cardiac myosin designed as an orally administered drug for the treatment of patients with hypertrophic cardiomyopathy. The current study objectives were to assess the preclinical pharmacokinetics of mavacamten for the prediction of human dosing and to establish the potential need for clinical pharmacokinetic studies characterizing drug-drug interaction potential. Mavacamten does not inhibit CYP enzymes, but at high concentrations relative to anticipated therapeutic concentrations induces CYP2B6 and CYP3A4 enzymes in vitro. Mavacamten showed high permeability and low efflux transport across Caco-2 cell membranes. In human hepatocytes, mavacamten was not a substrate for drug transporters OATP, OCT and NTCP. Mavacamten was determined to have minimal drug-drug interaction risk. In vitro mavacamten metabolite profiles included phase I- and phase II-mediated metabolism cross-species. Major pathways included aromatic hydroxylation (M1), aliphatic hydroxylation (M2); N-dealkylation (M6), and glucuronidation of the M1-metabolite (M4). Reaction phenotyping revealed CYPs 2C19 and 3A4/3A5 predominating. Mavacamten demonstrated low clearance, high volume of distribution, long terminal elimination half-life and excellent oral bioavailability cross-species. Simple four-species allometric scaling led to predicted plasma clearance, volume of distribution and half-life of 0.51 mL/min/kg, 9.5 L/kg and 9 days, respectively, in human.


Asunto(s)
Bencilaminas/farmacocinética , Uracilo/análogos & derivados , Animales , Bencilaminas/química , Bencilaminas/metabolismo , Células CACO-2 , Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Perros , Interacciones Farmacológicas , Hepatocitos/metabolismo , Humanos , Macaca fascicularis , Masculino , Tasa de Depuración Metabólica , Ratones Endogámicos ICR , Microsomas Hepáticos , Ratas Sprague-Dawley , Uracilo/química , Uracilo/metabolismo , Uracilo/farmacocinética
7.
J Appl Clin Med Phys ; 19(5): 598-608, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30112797

RESUMEN

PURPOSE: The purpose of this study was to evaluate the quality of automatically propagated contours of organs at risk (OARs) based on respiratory-correlated navigator-triggered four-dimensional magnetic resonance imaging (RC-4DMRI) for calculation of internal organ-at-risk volume (IRV) to account for intra-fractional OAR motion. METHODS AND MATERIALS: T2-weighted RC-4DMRI images were of 10 volunteers acquired and reconstructed using an internal navigator-echo surrogate and concurrent external bellows under an IRB-approved protocol. Four major OARs (lungs, heart, liver, and stomach) were delineated in the 10-phase 4DMRI. Two manual-contour sets were delineated by two clinical personnel and two automatic-contour sets were propagated using free-form deformable image registration. The OAR volume variation within the 10-phase cycle was assessed and the IRV was calculated as the union of all OAR contours. The OAR contour similarity between the navigator-triggered and bellows-rebinned 4DMRI was compared. A total of 2400 contours were compared to the most probable ground truth with a 95% confidence level (S95) in similarity, sensitivity, and specificity using the simultaneous truth and performance level estimation (STAPLE) algorithm. RESULTS: Visual inspection of automatically propagated contours finds that approximately 5-10% require manual correction. The similarity, sensitivity, and specificity between manual and automatic contours are indistinguishable (P > 0.05). The Jaccard similarity indexes are 0.92 ± 0.02 (lungs), 0.89 ± 0.03 (heart), 0.92 ± 0.02 (liver), and 0.83 ± 0.04 (stomach). Volume variations within the breathing cycle are small for the heart (2.6 ± 1.5%), liver (1.2 ± 0.6%), and stomach (2.6 ± 0.8%), whereas the IRV is much larger than the OAR volume by: 20.3 ± 8.6% (heart), 24.0 ± 8.6% (liver), and 47.6 ± 20.2% (stomach). The Jaccard index is higher in navigator-triggered than bellows-rebinned 4DMRI by 4% (P < 0.05), due to the higher image quality of navigator-based 4DMRI. CONCLUSION: Automatic and manual OAR contours from Navigator-triggered 4DMRI are not statistically distinguishable. The navigator-triggered 4DMRI image provides higher contour quality than bellows-rebinned 4DMRI. The IRVs are 20-50% larger than OAR volumes and should be considered in dose estimation.


Asunto(s)
Imagen por Resonancia Magnética , Algoritmos , Humanos , Movimiento (Física) , Planificación de la Radioterapia Asistida por Computador , Respiración , Estudios Retrospectivos
8.
Biochem Biophys Res Commun ; 483(1): 772-778, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-27965100

RESUMEN

The bright bioluminescence of copepod Metridia longa is conditioned by a small secreted coelenterazine-dependent luciferase (MLuc). To date, three isoforms of MLuc differing in length, sequences, and some properties were cloned and successfully applied as high sensitive bioluminescent reporters. In this work, we report cloning of a novel group of genes from M. longa encoding extremely psychrophilic isoforms of MLuc (MLuc2-type). The novel isoforms share only ∼54-64% of protein sequence identity with the previously cloned isoforms and, consequently, are the product of a separate group of paralogous genes. The MLuc2 isoform with consensus sequence was produced as a natively folded protein using baculovirus/insect cell expression system, purified, and characterized. The MLuc2 displays a very high bioluminescent activity and high thermostability similar to those of the previously characterized M. longa luciferase isoform MLuc7. However, in contrast to MLuc7 revealing the highest activity at 12-17 °C and 0.5 M NaCl, the bioluminescence optima of MLuc2 isoforms are at ∼5 °C and 1 M NaCl. The MLuc2 adaptation to cold is also accompanied by decrease of melting temperature and affinity to substrate suggesting a more conformational flexibility of a protein structure. The luciferase isoforms with different temperature optima may provide adaptability of the M. longa bioluminescence to the changes of water temperature during diurnal vertical migrations.


Asunto(s)
Copépodos/enzimología , Luciferasas/química , Luminiscencia , Secuencia de Aminoácidos , Animales , Clonación Molecular , Estabilidad de Enzimas , Calor , Insectos/química , Insectos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Luciferasas/genética , Luciferasas/aislamiento & purificación , Mediciones Luminiscentes , Conformación Proteica , Alineación de Secuencia
9.
Biochem Biophys Res Commun ; 457(1): 77-82, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25543059

RESUMEN

Coelenterazine-dependent copepod luciferases containing natural signal peptide for secretion are a very convenient analytical tool as they enable monitoring of intracellular events with high sensitivity, without destroying cells or tissues. This property is well suited for application in biomedical research and development of cell-based assays for high throughput screening. We report the cloning of cDNA gene encoding a novel secreted non-allelic 16.5-kDa isoform (MLuc7) of Metridia longa luciferase, which, in fact, is the smallest natural luciferase of known for today. Despite the small size, isoform contains 10 conservative Cys residues suggesting the presence of up to 5 SS bonds. This hampers the efficient production of functionally active recombinant luciferase in bacterial expression systems. With the use of the baculovirus expression system, we produced substantial amounts of the proper folded MLuc7 luciferase with a yield of ∼3 mg/L of a high purity protein. We demonstrate that MLuc7 produced in insect cells is highly active and extremely thermostable, and is well suited as a secreted reporter when expressed in mammalian cells ensuring higher sensitivity of detection as compared to another Metridia luciferase isoform (MLuc164) which is widely employed in real-time imaging.


Asunto(s)
Copépodos/enzimología , Luciferasas/genética , Luciferasas/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , Células HEK293 , Humanos , Cuerpos de Inclusión/metabolismo , Cinética , Luciferasas/química , Mediciones Luminiscentes , Datos de Secuencia Molecular , Peso Molecular , Alineación de Secuencia , Células Sf9 , Factores de Tiempo
10.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 720-32, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24598741

RESUMEN

Ca(2+)-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca(2+) inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 Šresolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca(2+) discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2 in wild-type obelin is not found. However, in Ca(2+)-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca(2+)-regulated photoproteins in some of its properties, they are believed to share a common mechanism.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia , Calcio/química , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Agua/química , Catálisis , Cristalografía por Rayos X , Factores de Tiempo
11.
Anal Bioanal Chem ; 406(23): 5715-26, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25012352

RESUMEN

Calcium ion is a ubiquitous intracellular messenger, performing this function in many eukaryotic cells. To understand calcium regulation mechanisms and how disturbances of these mechanisms are associated with disease states, it is necessary to measure calcium inside cells. Ca(2+)-regulated photoproteins have been successfully used for this purpose for many years. Here we report the results of comparative studies on the properties of recombinant aequorin from Aequorea victoria, recombinant obelins from Obelia geniculata and Obelia longissima, recombinant mitrocomin from Mitrocoma cellularia, and recombinant clytin from Clytia gregaria as intracellular calcium indicators in a set of identical in vitro and in vivo experiments. Although photoproteins reveal a high degree of identity of amino acid sequences and spatial structures, and, apparently, have a common mechanism for the bioluminescence reaction, they were found to differ in the Ca(2+) concentration detection limit, the sensitivity of bioluminescence to Mg(2+), and the rates of the rise of the luminescence signal with a sudden change of Ca(2+) concentration. In addition, the bioluminescence activities of Chinese hamster ovary cells expressing wild-type photoproteins also differed. The light signals of cells expressing mitrocomin, for example, slightly exceeded the background, suggesting that mitrocomin may be hardly used to detect intracellular Ca(2+) without modifications improving its properties. On the basis of experiments on the activation of endogenous P2Y2 receptor in Chinese hamster ovary cells by ATP, we suggest that wild-type aequorin and obelin from O. longissima are more suitable for calcium detection in cytoplasm, whereas clytin and obelin from O. geniculata can be used for calcium measurement in cell compartments with high Ca(2+) concentration.


Asunto(s)
Técnicas Biosensibles/métodos , Calcio/análisis , Mediciones Luminiscentes/métodos , Proteínas Luminiscentes/química , Animales , Técnicas Biosensibles/instrumentación , Células CHO , Calcio/metabolismo , Cricetinae , Cricetulus , Mediciones Luminiscentes/instrumentación , Proteínas Luminiscentes/metabolismo
12.
Methods Mol Biol ; 2757: 289-306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38668973

RESUMEN

The functional screening of cDNA libraries (or functional cloning) enables isolation of cDNA genes encoding novel proteins with unknown amino acid sequences. This approach is the only way to identify a protein sequence in the event of shortage of biological material for obtaining pure target protein in amounts sufficient to determine its primary structure, since sensitive functional test for a target protein is only required to successfully perform functional cloning. Commonly, bioluminescent proteins from representatives belonging to different taxa significantly differ in sequences due to independent origin of bioluminescent systems during evolution. Nonetheless, these proteins are frequently similar in functions and can use even the same substrate of bioluminescence reaction, allowing the use of the same functional test for screening. The cDNA genes encoding unknown light-emitting proteins can be identified during functional screening with high sensitivity, which is provided by modern light recording equipment making possible the detection of a very small amount of a target protein. Here, we present the protocols for isolation of full-size cDNA genes for the novel bioluminescent protein family of light-sensitive Ca2+-regulated photoproteins in the absence of any sequence information by functional screening of plasmid cDNA expression library. The protocols describe all the steps from gathering animals to isolation of individual E. coli colonies carrying full-size cDNA genes using photoprotein berovin from ctenophore Beroe abyssicola as an illustrative example.


Asunto(s)
Clonación Molecular , Ctenóforos , ADN Complementario , Biblioteca de Genes , Proteínas Luminiscentes , Animales , Ctenóforos/genética , Ctenóforos/metabolismo , Clonación Molecular/métodos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , ADN Complementario/genética , Escherichia coli/genética , Escherichia coli/metabolismo
13.
Methods Mol Biol ; 2757: 269-287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38668972

RESUMEN

Light-sensitive Ca2+-regulated photoproteins of ctenophores are single-chain polypeptide proteins of 206-208 amino acids in length comprising three canonical EF-hand Ca2+-binding sites, each of 12 contiguous residues. These photoproteins are a stable complex of apoprotein and 2-hydroperoxy adduct of coelenterazine. Addition of calcium ions to photoprotein is only required to trigger bright bioluminescence. However, in contrast to the related Ca2+-regulated photoproteins of jellyfish their capacity to bioluminescence disappears on exposure to light over the entire absorption spectral range of ctenophore photoproteins. Here, we describe protocols for expression of gene encoding ctenophore photoprotein in Escherichia coli cells, obtaining of the recombinant apoprotein of high purity and its conversion into active photoprotein with synthetic coelenterazine as well as determination of its sensitivity to calcium ions using light-sensitive Ca2+-regulated photoprotein berovin from ctenophore Beroe abyssicola as an illustrative case.


Asunto(s)
Calcio , Ctenóforos , Escherichia coli , Imidazoles , Proteínas Luminiscentes , Ctenóforos/genética , Ctenóforos/metabolismo , Calcio/metabolismo , Animales , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Expresión Génica , Clonación Molecular/métodos , Pirazinas/metabolismo
14.
Pharmacogenet Genomics ; 23(1): 29-33, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23188068

RESUMEN

Docetaxel-related neutropenia was associated with polymorphisms in the drug transporters ABCC2 and SLCO1B3 in Japanese cancer patients. We hypothesized that this association is because of reduced docetaxel clearance, associated with polymorphisms in those genes. We studied 64 US cancer patients who received a single cycle of 75 mg/m of docetaxel monotherapy. We found that the ABCC2 polymorphism at rs-12762549 trended to show a relationship with reduced docetaxel clearance (P=0.048), but not with neutropenia. There was no significant association of the SLCO1B3 polymorphisms with docetaxel clearance or neutropenia. We conclude that the relationship between docetaxel-associated neutropenia and polymorphisms in drug transporters identified in Japanese patients was not confirmed in this cohort of US cancer patients.


Asunto(s)
Antineoplásicos/farmacocinética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Neoplasias/tratamiento farmacológico , Neutropenia/genética , Transportadores de Anión Orgánico Sodio-Independiente/genética , Polimorfismo de Nucleótido Simple/genética , Taxoides/farmacocinética , Adulto , Anciano , Antineoplásicos/efectos adversos , Docetaxel , Femenino , Humanos , Masculino , Tasa de Depuración Metabólica , Persona de Mediana Edad , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Neoplasias/complicaciones , Neoplasias/genética , Neutropenia/inducido químicamente , Farmacogenética , Estudios Retrospectivos , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos , Taxoides/efectos adversos , Distribución Tisular
15.
Photochem Photobiol Sci ; 12(6): 1016-24, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23525241

RESUMEN

Ca(2+)-regulated photoproteins are responsible for the bioluminescence of a variety of marine organisms, mostly coelenterates. The photoproteins consist of a single polypeptide chain to which an imidazopyrazinone derivative (2-hydroperoxycoelenterazine) is tightly bound. According to photoprotein spatial structures the side chains of His175, Trp179, and Tyr190 in obelin and His169, Trp173, Tyr184 in aequorin are at distances that allow hydrogen bonding with the peroxide and carbonyl groups of the 2-hydroperoxycoelenterazine ligand. We replaced these amino acids in both photoproteins by residues with different hydrogen bond donor-acceptor capacity. All mutants exhibited luciferase-like bioluminescence activity, hardly present in the wild-type photoproteins, and showed low or no photoprotein activity, except for aeqH169Q (24% of wild-type activity), obeW179Y (23%), obeW179F (67%), obeY190F (14%), and aeqY184F (22%). The results clearly support the supposition made from photoprotein spatial structures that the hydrogen bond network formed by His-Trp-Tyr triad participates in stabilizing the 2-hydroperoxy adduct of coelenterazine. These residues are also essential for the positioning of the 2-hydroperoxycoelenterazine intermediate, light emitting reaction, and for the formation of active photoprotein. In addition, we demonstrate that although the positions of His-Trp-Tyr residues in aequorin and obelin spatial structures are almost identical the substitution effects might be noticeably different.


Asunto(s)
Aequorina/química , Hidrozoos/química , Sustancias Luminiscentes/química , Proteínas Luminiscentes/química , Aequorina/genética , Animales , Clonación Molecular , Escherichia coli/genética , Hidrozoos/genética , Sustancias Luminiscentes/metabolismo , Mediciones Luminiscentes , Proteínas Luminiscentes/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida
16.
Life (Basel) ; 13(5)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37240867

RESUMEN

Luciferases from copepods Metridia longa and Gaussia princeps are successfully used as bioluminescent reporters for in vivo and in vitro assays. Here, we report the minimal sequence of copepod luciferases required for bioluminescence activity that was revealed by gradual deletions of sequence encoding the smallest MLuc7 isoform of M. longa luciferase. The single catalytic domain is shown to reside within the G32-A149 MLuc7 sequence and to be formed by both non-identical repeats, including 10 conserved Cys residues. Because this part of MLuc7 displays high homology with those of other copepod luciferases, our suggestion is that the determined boundaries of the catalytic domain are the same for all known copepod luciferases. The involvement of the flexible C-terminus in the retention of the bioluminescent reaction product in the substrate-binding cavity was confirmed by structural modeling and kinetics study. We also demonstrate that the ML7-N10 mutant (15.4 kDa) with deletion of ten amino acid residues at the N-terminus can be successfully used as a miniature bioluminescent reporter in living cells. Application of a shortened reporter may surely reduce the metabolic load on the host cells and decrease steric and functional interference at its use as a part of hybrid proteins.

17.
Biochem Biophys Res Commun ; 417(1): 98-103, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22138240

RESUMEN

The technology of real-time imaging in living cells is crucial for understanding of intracellular events. For this purpose, bioluminescent reporters have been introduced as sensitive and convenient tools. Metridia luciferase (MLuc) from the copepod Metridia longa is a coelenterazine-dependent luciferase containing a natural signal peptide for secretion. We report the high-active MLuc mutants with deletion of the N-terminal variable part of amino acid sequence. The MLuc variants were produced in Escherichia coli cells, converted to an active protein, and characterized. We demonstrate that the truncated MLucs have significantly increased bioluminescent activity as against the wild type enzyme but substantially retain other properties. One of the truncated variants of MLuc was transiently expressed in HEK 293 cells. The results clearly suggest that the truncated Metridia luciferase is well suited as a secreted reporter ensuring higher detection sensitivity in comparison with a wild type enzyme.


Asunto(s)
Copépodos/enzimología , Luciferasas/química , Secuencia de Aminoácidos , Animales , Escherichia coli/genética , Células HEK293 , Humanos , Luciferasas/biosíntesis , Luciferasas/genética , Datos de Secuencia Molecular , Eliminación de Secuencia
18.
J Pharmacol Exp Ther ; 341(3): 725-34, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22414856

RESUMEN

Acute kidney injury is associated with a significant inflammatory response that has been the target of renoprotection strategies. Epoxyeicosatrienoic acids (EETs) are anti-inflammatory cytochrome P450-derived eicosanoids that are abundantly produced in the kidney and metabolized by soluble epoxide hydrolase (sEH; Ephx2) to less active dihydroxyeicosatrienoic acids. Genetic disruption of Ephx2 and chemical inhibition of sEH were used to test whether the anti-inflammatory effects of EETs, and other lipid epoxide substrates of sEH, afford protection against cisplatin-induced nephrotoxicity. EET hydrolysis was significantly reduced in Ephx2(-/-) mice and was associated with an attenuation of cisplatin-induced increases in serum urea nitrogen and creatinine levels. Histological evidence of renal tubular damage and neutrophil infiltration was also reduced in the Ephx2(-/-) mice. Likewise, cisplatin had no effect on renal function, neutrophil infiltration, or tubular structure and integrity in mice treated with the potent sEH inhibitor 1-adamantan-1-yl-3-(1-methylsulfonyl-piperidin-4-yl-urea) (AR9273). Consistent with the ability of EETs to interfere with nuclear factor-κB (NF-κB) signaling, the observed renoprotection was associated with attenuation of renal NF-κB activity and corresponding decreases in the expression of tumor necrosis factor (TNF) α, TNF receptor (TNFR) 1, TNFR2, and intercellular adhesive molecule-1 before the detection of tubular injury. These data suggest that EETs or other fatty acid epoxides can attenuate cisplatin-induced kidney injury and sEH inhibition is a novel renoprotective strategy.


Asunto(s)
Lesión Renal Aguda/prevención & control , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Epóxido Hidrolasas/antagonistas & inhibidores , FN-kappa B/metabolismo , Ácido 8,11,14-Eicosatrienoico/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/enzimología , Adamantano/análogos & derivados , Adamantano/farmacología , Animales , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
19.
Methods Mol Biol ; 2524: 59-73, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821463

RESUMEN

The small coelenterazine-dependent luciferase from Metridia longa (MLuc), in view of its high activity, simplicity of bioluminescent (BL) reaction, and stability, has found successful analytical applications as a genetically encoded reporter for in vivo assessment of cellular processes. However, the study on the biochemical and BL properties and the development of in vitro analytical applications of MLuc are hampered by the difficulties of obtaining a sufficient amount of the highly active recombinant protein due to the presence of multiple (up to five) disulfide bonds per molecule. Here, we present a protocol to obtain the recombinant disulfide-rich MLuc using a cheap and simple Escherichia coli expression system without any affinity tags in its native form by refolding from inclusion bodies. The method includes (i) purification of MLuc inclusion bodies, solubilization of the aggregated form with full reduction of disulfide bonds, and refolding to the native state using a glutathione redox system in the presence of arginine and Cu2+ ions and (ii) chromatographic purification of MLuc and its functional assessment in terms of activity. We introduce the empirical, optimal conditions for oxidative refolding and subsequent purification of MLuc, with its basic properties taken into account. We believe that this protocol is adaptable for a large-scale harvest of other natively folded copepod luciferases as well as other disulfide-rich recombinant proteins from E. coli inclusion bodies.


Asunto(s)
Copépodos , Escherichia coli , Animales , Disulfuros/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cuerpos de Inclusión/metabolismo , Luciferasas/química , Luciferasas/genética , Oxidación-Reducción , Estrés Oxidativo , Proteínas Recombinantes/química
20.
Methods Mol Biol ; 2524: 75-89, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821464

RESUMEN

Secreted copepod luciferases (CopLucs) represent highly homologous enzymes which catalyze the oxidation of a low molecular weight substrate, coelenterazine, with the emission of blue light (λmax = 485-488 nm), that is called bioluminescence (BL). The well-studied Gaussia (GLuc) and Metridia (MLuc) luciferases originally cloned from the marine copepods Gaussia princeps and Metridia longa belong to the group of the smallest natural luciferases. Their minimal molecular weight, high luminescent activity, cofactor-independent BL, and the ability to be secreted due to the own signal peptide open up the horizons for genetic engineering of CopLuc-based sensitive biosensors for in vivo imaging and in vitro analytical applications. The "standard" soluble bacterial expression of the recombinant CopLucs and luciferase-based hybrid proteins is hampered by the presence of high amounts of intramolecular disulfide bonds (up to 5 per molecule). Here, we describe the universal protocol for highly effective secreted expression of disulfide-rich CopLucs using their own signal peptide in insect cells and their purification from serum-free culture medium. The suggested protocol allows obtaining high-purity CopLucs folded in their native form with the yield of up to 5 mg per liter.


Asunto(s)
Copépodos , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Copépodos/genética , Disulfuros/química , Luciferasas/metabolismo , Señales de Clasificación de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA