Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791121

RESUMEN

Melanoma, arguably the deadliest form of skin cancer, is responsible for the majority of skin-cancer-related fatalities. Innovative strategies concentrate on new therapies that avoid the undesirable effects of pharmacological or medical treatment. This article discusses the chemical structures of [(MTZ)2AgNO3], [(MTZ)2Ag]2SO4, [Ag(MCZ)2NO3], [Ag(MCZ)2BF4], [Ag(MCZ)2SbF6] and [Ag(MCZ)2ClO4] (MTZ-metronidazole; MCZ-miconazole) silver(I) compounds and the possible relationship between the molecules and their cytostatic activity against melanoma cells. Molecular Hirshfeld surface analysis and computational methods were used to examine the possible association between the structure and anticancer activity of the silver(I) complexes and compare the cytotoxicity of the silver(I) complexes of metronidazole and miconazole with that of silver(I) nitrate, cisplatin, metronidazole and miconazole complexes against A375 and BJ cells. Additionally, these preliminary biological studies found the greatest IC50 values against the A375 line were demonstrated by [Ag(MCZ)2NO3] and [(MTZ)2AgNO3]. The compound [(MTZ)2AgNO3] was three-fold more toxic to the A375 cells than the reference (cisplatin) and 15 times more cytotoxic against the A375 cells than the normal BJ cells. Complexes of metronidazole with Ag(I) are considered biocompatible at a concentration below 50 µmol/L.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Melanoma , Metronidazol , Miconazol , Plata , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Miconazol/farmacología , Miconazol/química , Plata/química , Antineoplásicos/farmacología , Antineoplásicos/química , Metronidazol/química , Metronidazol/farmacología , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Supervivencia Celular/efectos de los fármacos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología
2.
Mol Pharm ; 19(11): 3806-3819, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36027044

RESUMEN

Oxidative stress and pathological changes of Alzheimer's disease (AD) overlap with metabolic diseases, such as diabetes mellitus (DM). Therefore, tackling oxidative stress with antioxidants is a compelling drug target against multiple chronic diseases simultaneously. Ferulic acid (FA), a natural antioxidant, has previously been studied as a therapeutic agent against both AD and DM. However, FA suffers from poor bioavailability and delivery. As a solution, we have previously reported about L-type amino acid transporter 1 (LAT1)-utilizing derivatives with increased brain delivery and efficacy. In the present study, we evaluated the pharmacokinetics and antioxidative efficacy of the two derivatives in peripheral mouse tissues. Furthermore, we quantified the LAT1 expression in studied tissues with a targeted proteomics method to verify the transporter expression in mouse tissues. Additionally, the safety of the derivatives was assessed by exploring their effects on hemostasis in human plasma, erythrocytes, and endothelial cells. We found that both derivatives accumulated substantially in the pancreas, with over a 100-times higher area under curve compared to the FA. Supporting the pharmacokinetics, the LAT1 was highly expressed in the mouse pancreas. Treating mice with the LAT1-utilizing derivative of FA lowered malondialdehyde and prostaglandin E2 production in the pancreas, highlighting its antioxidative efficacy. Additionally, the LAT1-utilizing derivatives were found to be hemocompatible in human plasma and endothelial cells. Since antioxidative derivative 1 was substantially delivered into the pancreas along the previously studied brain, the derivative can be considered as a safe dual-targeting drug candidate in both the pancreas and the brain.


Asunto(s)
Transportador de Aminoácidos Neutros Grandes 1 , Peroxidación de Lípido , Páncreas , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Páncreas/metabolismo , Prostaglandinas/metabolismo
3.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563011

RESUMEN

The aim of this study was to assess the potency of selected antipsychotic drugs (haloperidol (HAL), bromperidol (BRMP), benperidol (BNP), penfluridol (PNF), pimozide (PIM), quetiapine (QUET) and promazine (PROM)) on the main pathological hallmarks of Alzheimer's disease (AD). Binary mixtures of donepezil and antipsychotics produce an anti-BuChE effect, which was greater than either compound alone. The combination of rivastigmine and antipsychotic drugs (apart from PNF) enhanced AChE inhibition. The tested antipsychotics (excluding HAL and PNF) significantly reduce the early stage of Aß aggregation. BRMP, PIM, QUET and PROM were found to substantially inhibit Aß aggregation after a longer incubation time. A test of human erythrocytes hemolysis showed that short-term incubation of red blood cells (RBCs) with QUET resulted in decreased hemolysis. The antioxidative properties of antipsychotics were also proved in human umbilical vein endothelial cells (HUVEC); all tested drugs were found to significantly increase cell viability. In the case of astrocytes, BNP, PNF, PIM and PROM showed antioxidant potential.


Asunto(s)
Enfermedad de Alzheimer , Antipsicóticos , Enfermedad de Alzheimer/tratamiento farmacológico , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Inhibidores de la Colinesterasa/uso terapéutico , Células Endoteliales , Hemólisis , Humanos , Fumarato de Quetiapina/farmacología , Fumarato de Quetiapina/uso terapéutico , Rivastigmina
4.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35456961

RESUMEN

Due to its high efficiency, good safety profile, and potential cardio-protective properties, metformin, a dimethyl biguanide, is the first-line medication in antihyperglycemic treatment for type 2 diabetic patients. The aim of our present study was to assess the effects of eight new sulfonamide-based derivatives of metformin on selected plasma parameters and vascular hemostasis, as well as on endothelial and smooth muscle cell function. The compounds with an alkyl chain (1-3), trifluoromethyl substituent (4), or acetyl group (5) significantly elevated glucose utilization in human umbilical endothelial cells (HUVECs), similarly to metformin. Our novel findings showed that metformin analogues 1-3 presented the most beneficial properties because of their greatest safety profile in the WST-1 cell viability assay, which was also proved in the further HUVEC integrity studies using RTCA DP. Compounds 1-3 did not affect either HUVEC or aortal smooth muscle cell (AoSMC) viability up to 3.0 mM. Importantly, these compounds beneficially affected some of the coagulation parameters, including factor X and antithrombin III activity. In contrast to the above-mentioned metformin analogues, derivatives 4 and 5 exerted more profound anticoagulation effects; however, they were also more cytotoxic towards HUVECs, as IC50 values were 1.0-1.5 mM. In conclusion, the chemical modification of a metformin scaffold into sulfonamides possessing alkyl substituents results in the formation of novel derivatives with potential bi-directional activity including anti-hyperglycemic properties and highly desirable anti-coagulant activity.


Asunto(s)
Metformina , Coagulación Sanguínea , Células Endoteliales , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Metformina/química , Sulfonamidas/química , Sulfonamidas/farmacología
5.
Bioorg Chem ; 112: 104921, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33933805

RESUMEN

l-Type amino acid transporter 1 (LAT1) is an interesting protein due to its peculiar expression profile. It can be utilized not only as a carrier for improved or targeted drug delivery, e.g., into the brain but also as a target protein by which amino acid supply can be restricted, e.g., from the cancer cells. The recognition and binding processes of LAT1-ligands, such as amino acids and clinically used small molecules, including l-dopa, gabapentin, and melphalan, are today well-known. Binding to LAT1 is crucial, particularly when designing the LAT1-inhibitors. However, it will not guarantee effective translocation across the cell membrane via LAT1, which is a definite requirement for LAT1-substrates, such as drugs that elicit their pharmacological effects inside the cells. Therefore, in the present study, the accumulation of known LAT1-utilizing compounds into the selected LAT1-expressing cancer cells (MCF-7) was explored experimentally over a time period. The differences found among the transport efficiency and affinity of the studied compounds for LAT1 were subsequently explained by docking the ligands into the human LAT1 model (based on the recent cryo-electron microscopy structure). Thus, the findings of this study clarify the favorable structural requirements of the size, shape, and polarity of the ligands that support the translocation and effective transport across the cell membrane via LAT1. This knowledge can be applied in future drug design to attain improved or targeted drug delivery and hence, successful LAT1-utilizing drugs with increased therapeutic effects.


Asunto(s)
Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Leucina/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Leucina/química , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
6.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073245

RESUMEN

Metformin, apart from its glucose-lowering properties, has also been found to demonstrate anti-cancer properties. Anti-cancer efficacy of metformin depends on its uptake in cancer cells, which is mediated by plasma membrane monoamine transporters (PMAT) and organic cation transporters (OCTs). This study presents an analysis of transporter mediated cellular uptake of ten sulfonamide-based derivatives of metformin in two breast cancer cell lines (MCF-7 and MDA-MB-231). Effects of these compounds on cancer cell growth inhibition were also determined. All examined sulfonamide-based analogues of metformin were characterized by greater cellular uptake in both MCF-7 and MDA-MB-231 cells, and stronger cytotoxic properties than those of metformin. Effective intracellular transport of the examined compounds in MCF-7 cells was accompanied by high cytotoxic activity. For instance, compound 2 with meta-methyl group in the benzene ring inhibited MCF-7 growth at micromolar range (IC50 = 87.7 ± 1.18 µmol/L). Further studies showed that cytotoxicity of sulfonamide-based derivatives of metformin partially results from their ability to induce apoptosis in MCF-7 and MDA-MB-231 cells and arrest cell cycle in the G0/G1 phase. In addition, these compounds were found to inhibit cellular migration in wound healing assay. Importantly, the tested biguanides are more effective in MCF-7 cells at relatively lower concentrations than in MDA-MB-231 cells, which proves that the effectiveness of transporter-mediated accumulation in MCF-7 cells is related to biological effects, including MCF-7 cell growth inhibition, apoptosis induction and cell cycle arrest. In summary, this study supports the hypothesis that effective transporter-mediated cellular uptake of a chemical molecule determines its cytotoxic properties. These results warrant a further investigation of biguanides as putative anti-cancer agents.


Asunto(s)
Antineoplásicos , Apoptosis/efectos de los fármacos , Biguanidas , Neoplasias de la Mama , Puntos de Control del Ciclo Celular/efectos de los fármacos , Sulfonamidas , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Biguanidas/química , Biguanidas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Sulfonamidas/química , Sulfonamidas/farmacología
7.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34299347

RESUMEN

Efflux transporters, namely ATP-binding cassette (ABC), are one of the primary reasons for cancer chemoresistance and the clinical failure of chemotherapy. Ganciclovir (GCV) is an antiviral agent used in herpes simplex virus thymidine kinase (HSV-TK) gene therapy. In this therapy, HSV-TK gene is delivered together with GCV into cancer cells to activate the phosphorylation process of GCV to active GCV-triphosphate, a DNA polymerase inhibitor. However, GCV interacts with efflux transporters that are responsible for the resistance of HSV-TK/GCV therapy. In the present study, it was explored whether GCV and its more lipophilic derivative (1) could inhibit effluxing of another chemotherapeutic, methotrexate (MTX), out of the human breast cancer cells. Firstly, it was found that the combination of GCV and MTX was more hemocompatible than the corresponding combination with compound 1. Secondly, both GCV and compound 1 enhanced the cellular accumulation of MTX in MCF-7 cells, the MTX exposure being 13-21 times greater compared to the MTX uptake alone. Subsequently, this also reduced the number of viable cells (41-56%) and increased the number of late apoptotic cells (46-55%). Moreover, both GCV and compound 1 were found to interact with breast cancer resistant protein (BCRP) more effectively than multidrug-resistant proteins (MRPs) in these cells. Since the expression of BCRP was higher in MCF-7 cells than in MDA-MB-231 cells, and the cellular uptake of GCV and compound 1 was smaller but increased in the presence of BCRP-selective inhibitor (Fumitremorgin C) in MCF-7 cells, we concluded that the improved apoptotic effects of higher MTX exposure were raised mainly from the inhibition of BCRP-mediated efflux of MTX. However, the effects of GCV and its derivatives on MTX metabolism and the quantitative expression of MTX metabolizing enzymes in various cancer cells need to be studied more thoroughly in the future.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Ganciclovir/farmacología , Metotrexato/farmacología , Proteínas de Neoplasias/metabolismo , Antivirales/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células MCF-7 , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
8.
Apoptosis ; 25(5-6): 426-440, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32405891

RESUMEN

Increased amounts of amino acids are essential for cancer cells to support their sustained growth and survival. Therefore, inhibitors of amino acid transporters, such as L-type amino acid transporter 1 (LAT1) have been developed. In this study, a previously reported LAT1-inhibitor (KMH-233) was studied for its hemocompatibility and toxicity towards human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (AoSMCs). Furthermore, the cytotoxic effects against human breast adenocarcinoma cells (MCF-7) and its ability to affect mammalian (or mechanistic) target of rapamycin (mTOR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling were evaluated. Moreover, the effects of this inhibitor to modulate LAT1 function on the cell surface and the brain amino acid homeostasis were evaluated after intraperitoneal (i.p.) administration of LAT1-inhibitor (23 µmol/kg) in mice. The results showed that LAT1-inhibitor (KMH-233) is hemocompatible at concentrations below 25 µM and it does not affect coagulation in plasma. However, it can reduce the total protein amount of mTOR and NF-κB, resulting in increased apoptosis in LAT1-expressing cancer cells. Most importantly, the inhibitor did not affect mouse brain levels of L-Leu, L-Tyr or L-Trp or modulate the function of LAT1 on the MCF-7 cell surface. Therefore, this inhibitor can be considered as a safe but effective anti-cancer agent. However, due to the compensative mechanism of cancer cells for their increased amino acid demand, this compound is most effective inducing apoptosis when used in combinations with other chemotherapeutics, such as protease inhibitor, bestatin, as demonstrated in this study.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Imidazoles/farmacología , Transportador de Aminoácidos Neutros Grandes 1/genética , Leucina/análogos & derivados , Piridinas/farmacología , Animales , Apoptosis/genética , Benzoxazoles/farmacología , Encéfalo/patología , Química Encefálica , Ácidos Carboxílicos/farmacología , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inyecciones Intraperitoneales , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Leucina/farmacología , Células MCF-7 , Masculino , Ratones , Miocitos del Músculo Liso , FN-kappa B/genética , FN-kappa B/metabolismo , Norbornanos/farmacología , Cultivo Primario de Células , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Tiazoles/farmacología , Tirosina/análogos & derivados , Tirosina/farmacología
9.
Bioorg Chem ; 94: 103444, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31776031

RESUMEN

Apart from its hypoglycaemic properties, metformin also offers beneficial effects for the cardiovascular system resulting in significant reduction of diabetes-related death, and all-cause mortality. The aim of this study was to synthesize nine new benzenesulfonamide derivatives of metformin with a halogen substituent, and estimate their influence on selected parameters of plasma and vascular hemostasis. The study describes the synthesis of nine benzenesulfonamide biguanides with o-, m-, and p- chloro-, bromo-, and fluoro substituents. All orto- derivatives (chloro- (1), bromo- (4), and fluoro- (7)) significantly prolong prothrombin time (PT) and partially activated thromboplastin time (APTT). In addition compounds 4 and 7 slow the process of fibrin polymerization, and contribute to increased TT. Multiparametric CL-test revealed that compounds 1, 4, 7 and p-fluorobenzenesulfonamide (9) significantly prolong the onset of clot formation, decrease initial clot formation velocity, and maximum clotting. Analysis of human endothelial cell (HUVECs) and human aortal smooth muscle cell (AoSMCs) viability over the entire tested concentration range (0.001-3.0 µmol/mL) indicated that the examined compounds can undergo further tests up to 1.5 µmol/mL concentration without decreasing cellular viability. Furthermore, none of the synthesized compounds exert an unfavourable effect on erythrocyte integrity, and thus do not interact strongly with the lipid-protein bilayer. In summary, chemical modification of the metformin backbone into benzenesulfonamides containing halogen substituents at the o- position leads to the formation of potential agents with stronger anti-coagulant properties than the parent drug, metformin. Therefore, o-halogenated benzenesulfonamides can be regarded as an initial promising step in the development of novel biguanide-based compounds with anti-coagulant properties.


Asunto(s)
Biguanidas/farmacología , Sulfonamidas/farmacología , Animales , Biguanidas/síntesis química , Biguanidas/química , Coagulación Sanguínea/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Halogenación , Humanos , Ratones , Estructura Molecular , Ratas , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
10.
J Enzyme Inhib Med Chem ; 35(1): 1743-1750, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32938236

RESUMEN

The symptoms of Alzheimer's disease (AD) do not include only memory loss and cognitive decline but also neuropsychiatric manifestation. These AD-related symptoms are usually treated with the aid of antipsychotics; however, their effects on cognition and safety remain unexplored. The present study determines the effects of quetiapine, an atypical antipsychotic, and two imidazo[1,2-a]pyrimidine-based inhibitors of PDE10A on the activity of human cholinesterases. Quetiapine moderately inhibited BuChE (IC50 = 6.08 ± 1.64 µmol/L) but improved the anti-BuChE properties of donepezil by decreasing its IC50 value. Both PDE10A inhibitors were found to possess moderate anti-AChE properties. The combined mixtures of donepezil and imidazo[1,2-a]pyrimidine analogues produce a synergistic anti-BuChE effect which was greater than either compound alone, improving the IC50 value by approximately six times. These favourable interactions between quetiapine, PDE10A inhibitors and clinically approved donepezil, resulting in improved anti-BuChE activity, can lead to a wider variety of potent AD treatment options.


Asunto(s)
Antipsicóticos/farmacología , Inhibidores de la Colinesterasa/farmacología , Donepezilo/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Fumarato de Quetiapina/farmacología , Acetilcolinesterasa/metabolismo , Antipsicóticos/síntesis química , Antipsicóticos/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Donepezilo/síntesis química , Donepezilo/química , Relación Dosis-Respuesta a Droga , Voluntarios Sanos , Humanos , Estructura Molecular , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/química , Hidrolasas Diéster Fosfóricas/metabolismo , Fumarato de Quetiapina/síntesis química , Fumarato de Quetiapina/química , Relación Estructura-Actividad
11.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235654

RESUMEN

Metformin is a substrate for plasma membrane monoamine transporters (PMAT) and organic cation transporters (OCTs); therefore, the expression of these transporters and interactions between them may affect the uptake of metformin into tumor cells and its anticancer efficacy. The aim of this study was to evaluate how chemical modification of metformin scaffold into benzene sulfonamides with halogen substituents (compounds 1-9) may affect affinity towards OCTs, cellular uptake in two breast cancer cell lines (MCF-7 and MDA-MB-231) and antiproliferative efficacy of metformin. The uptake of most sulfonamides was more efficient in MCF-7 cells than in MDA-MB-231 cells. The presence of a chlorine atom in the aromatic ring contributed to the highest uptake in MCF-7 cells. For instance, the uptake of compound 1 with o-chloro substituent in MCF-7 cells was 1.79 ± 0.79 nmol/min/mg protein, while in MDA-MB-231 cells, the uptake was considerably lower (0.005 ± 0.0005 nmol/min/mg protein). The elevated uptake of tested compounds in MCF-7 was accompanied by high antiproliferative activity, with compound 1 being the most active (IC50 = 12.6 ± 1.2 µmol/L). Further studies showed that inhibition of MCF-7 growth is associated with the induction of early and late apoptosis and cell cycle arrest at the G0/G1 phase. In summary, the chemical modification of the biguanide backbone into halogenated sulfonamides leads to improved transporter-mediated cellular uptake in MCF-7 and contributes to the greater antiproliferative potency of studied compounds through apoptosis induction and cell cycle arrest.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Metformina/farmacología , Sulfonamidas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Halogenación , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Células MCF-7 , Metformina/análogos & derivados , Metformina/farmacocinética , Sulfonamidas/química , Sulfonamidas/farmacocinética
12.
Molecules ; 25(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244705

RESUMEN

A series of 3-benzylidenechrmanones 1, 3, 5, 7, 9 and their spiropyrazoline analogues 2, 4, 6, 8, 10 were synthesized. X-ray analysis confirms that compounds 2 and 8 crystallize in a monoclinic system in P21/n space groups with one and three molecules in each asymmetric unit. The crystal lattice of the analyzed compounds is enhanced by hydrogen bonds. The primary aim of the study was to evaluate the anti-proliferative potential of 3-benzylidenechromanones and their spiropyrazoline analogues towards four cancer cell lines. Our results indicate that parent compounds 1 and 9 with a phenyl ring at C2 have lower cytotoxic activity against cancer cell lines than their spiropyrazolines analogues. Analysis of IC50 values showed that the compounds 3 and 7 exhibited higher cytotoxic activity against cancer cells, being more active than the reference compound (4-chromanone or quercetin). The results of this study indicate that the incorporation of a pyrazoline ring into the 3-arylideneflavanone results in an improvement of the compounds' activity and therefore it may be of use in the search of new anticancer agents. Further analysis allowed us to demonstrate the compounds to have a strong inhibitory effect on the cell cycle. For instance, compounds 2, 10 induced 60% of HL-60 cells to be arrested in G2/M phase. Using a DNA-cleavage protection assay we also demonstrated that tested compounds interact with DNA. All compounds at the concentrations corresponding to cytotoxic properties are not toxic towards red blood cells, and do not contribute to hemolysis of RBCs.


Asunto(s)
Cromonas/química , Cromonas/farmacología , Pirazoles/química , Pirazoles/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Relación Estructura-Actividad
13.
Bioorg Chem ; 87: 321-334, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30913467

RESUMEN

Metformin, the most frequently administered oral anti-diabetic drug, is a substrate for organic cation transporters (OCTs). This determines not only its pharmacokinetic properties but also its biochemical effects in humans, including its recently-discovered antiproliferative properties. The aim of the study was to verify the hypothesis whether chemical modification of its biguanide backbone may increase the cellular uptake and antiproliferative efficacy of metformin. The study examines five sulfenamide derivatives of metformin with differing lengths of alkyl chains. It determines their cellular uptake and the role of OCTs in their transport in human breast adenocarcinoma cells (epithelial-like MCF-7, and MDA-MB-231). It also evaluates whether increased cellular uptake of metformin derivatives is associated with their cytotoxic properties. Sulfenamide derivatives were characterized by a greater ability to bind to OCTs than metformin. Compound 2 with n-octyl alkyl chain was found to possess the greatest affinity towards OCTs, as measured by determination of [14C]choline uptake inhibition (IC50 = 236.1 ±â€¯1.28 µmol/L, and 217.4 ±â€¯1.33 µmol/L, for MCF-7 and MDA-MB-231 respectively). Sulfenamides were also found to exhibit better cellular uptake in comparison with the parent drug, metformin. For instance, the uptake of cyclohexyl derivative 1 was 1.28 ±â€¯0.19 nmol/min/mg of proteins and thus was 12-fold higher than the metformin in MCF-7 cells. Furthermore, higher uptake was associated with the greatest antiproliferative properties expressed as the lowest IC50 value i.e. inhibiting the growth of 50% of the cells (IC50 = 0.72 ±â€¯1.31 µmol/L). Collectively, chemical modification of metformin into sulfenamides with different alkyl substituents obtains better substrates for OCTs, and subsequently higher cellular uptake in MCF-7 and MDA-MB-231 cells. Additionally, the length of alkyl chain introduced to the sulfenamides was found to influence selectivity and transport efficiency via OCT1 compared to other possible transporters, as well as potential intracellular activity and cytotoxicity.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Hipoglucemiantes/farmacocinética , Metformina/farmacocinética , Receptores de Estrógenos/metabolismo , Sulfamerazina/farmacología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Hipoglucemiantes/química , Células MCF-7 , Metformina/química , Estructura Molecular , Receptores de Estrógenos/genética , Relación Estructura-Actividad , Sulfamerazina/síntesis química , Sulfamerazina/química , Células Tumorales Cultivadas
14.
Molecules ; 25(1)2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31905674

RESUMEN

As type 2 diabetes mellitus (T2DM) predisposes patients to endothelial cell injury and dysfunction, improvement of vascular function should be an important target for therapy. The aim of this study was to evaluate the effects of metformin, its sulfenamide and sulfonamide derivatives on selected parameters of endothelial and smooth muscle cell function, and platelet activity. Metformin was not found to significantly affect the viability of human umbilical vein endothelial cells (HUVECs) or aortal smooth muscle cells (AoSMC); however, it decreased cell migration by approximately 21.8% in wound healing assays after 24 h stimulation (wound closure 32.5 µm versus 41.5 µm for control). Metformin reduced platelet aggregation manifested by 19.0% decrease in maximum of aggregation (Amax), and 20% reduction in initial platelet aggregation velocity (v0). Furthermore, metformin decreased spontaneous platelet adhesion by 27.7% and ADP-induced adhesion to fibrinogen by 29.6% in comparison to control. Metformin sulfenamide with an n-butyl alkyl chain (compound 1) appeared to exert the most unfavourable effects on AoSMC cell viability (IC50 = 0.902 ± 0.015 µmol/mL), while 4-nitrobenzenesulfonamide (compound 3) and 2-nitrobenzenesulfonamide (compound 4) derivatives of metformin did not affect AoSMC and HUVEC viability at concentrations up to 2.0 µmol/mL. These compounds were also found to significantly reduce migration of smooth muscle cells by approximately 81.0%. Furthermore, sulfonamides 3 and 4 decreased the initial velocity of platelet aggregation by 11.8% and 20.6%, respectively, and ADP-induced platelet adhesion to fibrinogen by 76.3% and 65.6%. Metformin and its p- and o-nitro-benzenesulfonamide derivatives 3, 4 appear to exert beneficial effects on some parameters of vascular and platelet haemostasis.


Asunto(s)
Plaquetas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Metformina , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Técnicas de Cocultivo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Fibrinógeno/metabolismo , Humanos , Metformina/análogos & derivados , Metformina/química , Metformina/farmacología , Sulfonamidas/química , Sulfonamidas/farmacología , Bencenosulfonamidas
15.
J Enzyme Inhib Med Chem ; 33(1): 1309-1322, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30251898

RESUMEN

The aim of this study was to assess in vitro the effects of sulphenamide and sulphonamide derivatives of metformin on the activity of human acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), establish the type of inhibition, and assess the potential synergism between biguanides and donepezil towards both cholinesterases (ChEs) and the effects on the ß-amyloid aggregation. Sulphonamide 5 with para-trifluoromethyl- and ortho-nitro substituents in aromatic ring inhibited AChE in a mixed-type manner at micromolar concentrations (IC50 = 212.5 ± 48.3 µmol/L). The binary mixtures of donepezil and biguanides produce an anti-AChE effect, which was greater than either compound had alone. A combination of donepezil and sulphonamide 5 improved the IC50 value by 170 times. Compound 5 at 200 µmol/L inhibited Aß aggregation by ∼20%. In conclusion, para-trifluoromethyl-ortho-nitro-benzenesulphonamide presents highly beneficial anti-AChE and anti-Aß aggregation properties which could serve as a promising starting point for the design and development of novel biguanide-based candidates for AD treatment.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Inhibidores de la Colinesterasa/farmacología , Indanos/farmacología , Metformina/análogos & derivados , Metformina/farmacología , Piperidinas/farmacología , Sulfonamidas/química , Sulfonamidas/farmacología , Acetilcolinesterasa/sangre , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Butirilcolinesterasa/sangre , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Donepezilo , Relación Dosis-Respuesta a Droga , Voluntarios Sanos , Humanos , Indanos/química , Concentración 50 Inhibidora , Cinética , Metformina/química , Estructura Molecular , Piperidinas/química , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad
16.
Molecules ; 23(12)2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30513785

RESUMEN

The aim of this study was to determine the cytotoxic effect of 3-arylidenechromanone (1) and 3arylideneflavanone (2) on HL-60 and NALM-6 cell lines (two human leukemia cell lines) and a WM-115 melanoma cell line. Both compounds exhibited high cytotoxic activity with higher cytotoxicity exerted by compound 2, for which IC50 values below 10 µM were found for each cell line. For compound 1, the IC50 values were higher than 10 µM for HL-60 and WM-115 cell lines, but IC50 < 10 µM was found for the NALM-6 cell line. Both compounds, at the concentrations close to IC50 (concentration range: 5⁻24 µM/L for compound 1 and 6⁻10 µM/L for compound 2), are not toxic towards red blood cells. The synthesized compounds were characterized using spectroscopic methods ¹H- and 13C-NMR, IR, MS, elemental analysis, and X-ray diffraction. The lipophilicity of both synthesized compounds was determined using an RP-TLC method and the logP values found were compared with the theoretical ones taken from the Molinspiration Cheminformatics (miLogP) software package. The mode of binding of both compounds to human serum albumin was assessed using molecular docking methods.


Asunto(s)
Eritrocitos/efectos de los fármacos , Flavanonas/química , Flavanonas/farmacología , Sustancias Macromoleculares/química , Albúmina Sérica Humana/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Hemólisis/efectos de los fármacos , Humanos , Enlace de Hidrógeno , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Albúmina Sérica Humana/metabolismo , Relación Estructura-Actividad
17.
Pharm Res ; 34(12): 2614-2627, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28589443

RESUMEN

Type 2 diabetes mellitus (T2DM) is a complex, chronic and progressive metabolic disease, which is characterized by relative insulin deficiency, insulin resistance, and high glucose levels in blood. Esteemed published articles and epidemiological data exhibit an increased risk of developing Alzheimer's disease (AD) in diabetic pateints. Metformin is the most frequently used oral anti-diabetic drug, which apart from hypoglycaemic activity, improves serum lipid profiles, positively influences the process of haemostasis, and possesses anti-inflammatory properties. Recently, scientists have put their efforts in establishing metformin's role in the treatment of neurodegenerative diseases, such as AD, amnestic mild cognitive impairment and Parkinson's disease. Results of several clinical studies confirm that long term use of metformin in diabetic patients contributes to better cognitive function, compared to participants using other anti-diabetic drugs. The exact mechanism of metformin's advantageous activity in AD is not fully understood, but scientists claim that activation of AMPK-dependent pathways in human neural stem cells might be responsible for the neuroprotective activity of metformin. Metformin was also found to markedly decease Beta-secretase 1 (BACE1) protein expression and activity in cell culture models and in vivo, thereby reducing BACE1 cleavage products and the production of Aß (ß-amyloid). Furthermore, there is also some evidence that metformin decreases the activity of acetylcholinesterase (AChE), which is responsible for the degradation of acetylcholine (Ach), a neurotransmitter involved in the process of learning and memory. In regard to the beneficial effects of metformin, its anti-inflammatory and anti-oxidative properties cannot be omitted. Numerous in vitro and in vivo studies have confirmed that metformin ameliorates oxidative damage.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Antioxidantes/uso terapéutico , Inhibidores de la Colinesterasa/uso terapéutico , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Inhibidores de la Colinesterasa/administración & dosificación , Inhibidores de la Colinesterasa/farmacocinética , Inhibidores de la Colinesterasa/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Descubrimiento de Drogas , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Metformina/administración & dosificación , Metformina/farmacocinética , Metformina/farmacología , Estrés Oxidativo/efectos de los fármacos
18.
Molecules ; 22(12)2017 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-29258275

RESUMEN

BACKGROUND: Iminodiacetic acid (IDA) derivatives can be used as ligands to form complexes with technetium, with potential application as hepatobiliary diagnostic agents. The aim of this study was to synthesize five novel IDA derivatives and to compare their effects on plasma haemostasis with clinically approved ligands for technetium complexation. METHODS: The influence of synthesized IDA derivatives on plasma haemostasis was evaluated spectrophotometrically by clot formation and lysis test (CL-test), coagulation assay, Prothrombin Time and Activated Partial Tromboplastin Time. The effects of the tested compounds on erythrocytes were assessed using haemolysis assays, microscopy and flow cytometry studies. RESULTS: Despite their significant influence on the kinetic parameters of the process of clot formation and fibrinolysis, the tested ligands, at potential diagnostic concentrations, did not alter the overall potential of clot formation and lysis (CLAUC). At potential diagnostic concentrations (0.4 µmol/mL) all the tested compounds showed no adverse effects on the membranes of RBCs (Red Blood Cells). CONCLUSION: IDA derivatives with methoxy substituents in aromatic ring, exert multidirectional effects on plasma haemostasis and should be considered safe as their significant impacts were mostly observed at 4 µmol/mL, which is about 10-fold higher than the theoretical plasma concentrations of these compounds.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Iminoácidos/síntesis química , Iminoácidos/farmacología , Eritrocitos/efectos de los fármacos , Humanos , Iminoácidos/química , Estructura Molecular , Tiempo de Tromboplastina Parcial , Tiempo de Protrombina , Relación Estructura-Actividad , Tecnecio/química
19.
Eur J Nutr ; 53(7): 1493-502, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24452534

RESUMEN

PURPOSE: Aronia melanocarpa has an extremely high content of procyanidins and anthocyanins. The multidirectional benefits of consumption of these berries are widely reported. Although numerous studies confirmed the influence of polyphenols on various stages of hemostasis, the exact mechanism of this phenomenon is not understood. The aim of our study was to evaluate the in vitro effect of A. melanocarpa extract on various parameters of hemostasis. METHODS: Adenosine 5'-diphosphate (ADP)-induced aggregation was measured with turbidimetric method. Spontaneous and ADP-activated platelet adhesion were investigated using a colorimetric method. The global assay of coagulation and fibrinolysis was performed with the use of optical clotting and lysis (CL) test. Thrombin (0.5 IU/mL) and tissue plasminogen activator (60 ng/mL) were used to obtain a CL curve. The activity of thrombin and plasmin was determined by means of chromogenic substrate (S-2238, S-2251) RESULTS: The aronia extract contributed to the reduction in spontaneous and ADP-activated platelet adhesion. A significant increase in overall potential of CL as well as significant changes in key parameters of these processes (T t-thrombin time, F vo-initial plasma clotting velocity, and L max-maximum lysis) was reported. Chokeberry extract significantly inhibited the amidolytic activity of thrombin and plasmin. CONCLUSION: Our in vitro findings indicate a complex mechanism of influence of chokeberry polyphenols on platelet activity and the overall potential of CL. We confirmed that chokeberry inhibits the amidolytic activity of thrombin. It was demonstrated for the first time that chokeberry polyphenols inhibit the amidolytic activity of another serine protease, i.e., plasmin, which is the main fibrinolytic enzyme. Furthermore, our research points out a significant contribution of other plasma components and fibrinogen in the modulation of hemostasis by polyphenols.


Asunto(s)
Hemostasis/efectos de los fármacos , Photinia/química , Extractos Vegetales/farmacología , Antocianinas/análisis , Antocianinas/farmacología , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/efectos de los fármacos , Adhesión Celular , Fibrinólisis/efectos de los fármacos , Frutas/química , Humanos , Polifenoles/análisis , Polifenoles/farmacología , Proantocianidinas/análisis , Proantocianidinas/farmacología , Trombina/metabolismo , Activador de Tejido Plasminógeno/metabolismo
20.
Chem Biol Interact ; 388: 110833, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38101600

RESUMEN

Many chemotherapeutic drugs suffer from multidrug resistance (MDR). Efflux transporters, namely ATP-binding cassettes (ABCs), that pump the drugs out of the cancer cells comprise one major reason behind MDR. Therefore, ABC inhibitors have been under development for ages, but unfortunately, without clinical success. In the present study, an l-type amino acid transporter 1 (LAT1)-utilizing derivative of probenecid (PRB) was developed as a cancer cell-targeted efflux inhibitor for P-glycoprotein (P-gp), breast cancer resistant protein (BCRP) and/or several multidrug resistant proteins (MRPs), and its ability to increase vinblastine (VBL) cellular accumulation and apoptosis-inducing effects were explored. The novel amino acid derivative of PRB (2) increased the VBL exposure in triple-negative human breast cancer cells (MDA-MB-231) and human glioma cells (U-87MG) by 10-68 -times and 2-5-times, respectively, but not in estrogen receptor-positive human breast cancer cells (MCF-7). However, the combination therapy had greater cytotoxic effects in MCF-7 compared to MDA-MB-231 cells due to the increased oxidative stress recorded in MCF-7 cells. The metabolomic study also revealed that compound 2, together with VBL, decreased the transport of those amino acids essential for the biosynthesis of endogenous anti-oxidant glutathione (GSH). Moreover, the metabolic differences between the outcomes of the studied breast cancer cell lines were explained by the distinct expression profiles of solute carriers (SLCs) that can be concomitantly inhibited. Therefore, attacking several SLCs simultaneously to change the nutrient environment of cancer cells can serve as an adjuvant therapy to other chemotherapeutics, offering an alternative to ABC inhibitors.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Vinblastina/farmacología , Vinblastina/metabolismo , Vinblastina/uso terapéutico , Probenecid/farmacología , Probenecid/uso terapéutico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Apoptosis , Estrés Oxidativo , Aminoácidos/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA