Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071997

RESUMEN

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Femenino , Masculino , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/complicaciones , Haploinsuficiencia/genética , Discapacidad Intelectual/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Humanos
2.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35395208

RESUMEN

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Trastornos del Neurodesarrollo , Ubiquitinación , Proteína 7 que Contiene Repeticiones F-Box-WD/química , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Células Germinativas , Mutación de Línea Germinal , Humanos , Trastornos del Neurodesarrollo/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Ann Hum Genet ; 86(4): 171-180, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35141892

RESUMEN

It has been estimated that Copy Number Variants (CNVs) account for 10%-20% of patients affected by Developmental Disorder (DD)/Intellectual Disability (ID). Although array comparative genomic hybridization (array-CGH) represents the gold-standard for the detection of genomic imbalances, common Agilent array-CGH 4 × 180 kb arrays fail to detect CNVs smaller than 30 kb. Whole Exome sequencing (WES) is becoming the reference application for the detection of gene variants and makes it possible also to infer genomic imbalances at single exon resolution. However, the contribution of small CNVs in DD/ID is still underinvestigated. We made use of the eXome Hidden Markov Model (XHMM) software, a tool utilized by the ExAC consortium, to detect CNVs from whole exome sequencing data, in a cohort of 200 unsolved DD/DI patients after array-CGH and WES-based single nucleotide/indel variant analyses. In five out of 200 patients (2.5%), we identified pathogenic CNV(s) smaller than 30 kb, ranging from one to six exons. They included two heterozygous deletions in TCF4 and STXBP1 and three homozygous deletions in PPT1, CLCN2, and PIGN. After reverse phenotyping, all variants were reported as causative. This study shows the interest in applying sequencing-based CNV detection, from available WES data, to reduce the diagnostic odyssey of additional patients unsolved DD/DI patients and compare the CNV-detection yield of Agilent array-CGH 4 × 180kb versus whole exome sequencing.


Asunto(s)
Exoma , Discapacidad Intelectual , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Genómica , Humanos , Discapacidad Intelectual/genética , Secuenciación del Exoma
4.
J Med Genet ; 58(6): 400-413, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32732226

RESUMEN

PURPOSE: Molecular diagnosis based on singleton exome sequencing (sES) is particularly challenging in fetuses with multiple congenital abnormalities (MCA). Indeed, some studies reveal a diagnostic yield of about 20%, far lower than in live birth individuals showing developmental abnormalities (30%), suggesting that standard analyses, based on the correlation between clinical hallmarks described in postnatal syndromic presentations and genotype, may underestimate the impact of the genetic variants identified in fetal analyses. METHODS: We performed sES in 95 fetuses with MCA. Blind to phenotype, we applied a genotype-first approach consisting of combined analyses based on variants annotation and bioinformatics predictions followed by reverse phenotyping. Initially applied to OMIM-morbid genes, analyses were then extended to all genes. We complemented our approach by using reverse phenotyping, variant segregation analysis, bibliographic search and data sharing in order to establish the clinical significance of the prioritised variants. RESULTS: sES rapidly identified causal variant in 24/95 fetuses (25%), variants of unknown significance in OMIM genes in 8/95 fetuses (8%) and six novel candidate genes in 6/95 fetuses (6%). CONCLUSIONS: This method, based on a genotype-first approach followed by reverse phenotyping, shed light on unexpected fetal phenotype-genotype correlations, emphasising the relevance of prenatal studies to reveal extreme clinical presentations associated with well-known Mendelian disorders.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Congénitas/genética , Exoma , Feto/anomalías , Estudios de Asociación Genética , Estudios de Cohortes , Exoma/genética , Genotipo , Humanos , Análisis de Secuencia de ADN
5.
Genet Med ; 23(10): 1901-1911, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34113008

RESUMEN

PURPOSE: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized. METHODS: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing. RESULTS: We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity. CONCLUSION: We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy.


Asunto(s)
Epilepsia , Factores de Intercambio de Guanina Nucleótido , Haploinsuficiencia , Discapacidad Intelectual , Epilepsia/genética , Factores de Intercambio de Guanina Nucleótido/genética , Heterocigoto , Humanos , Discapacidad Intelectual/genética
6.
Clin Genet ; 100(4): 396-404, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34176129

RESUMEN

Ephrin receptor and their ligands, the ephrins, are widely expressed in the developing brain. They are implicated in several developmental processes that are crucial for brain development. Deletions in genes encoding for members of the Eph/ephrin receptor family were reported in several neurodevelopmental disorders. The ephrin receptor A7 gene (EPHA7) encodes a member of ephrin receptor subfamily of the protein-tyrosine kinase family. EPHA7 plays a role in corticogenesis processes, determines brain size and shape, and is involved in development of the central nervous system. One patient only was reported so far with a de novo deletion encompassing EPHA7 in 6q16.1. We report 12 additional patients from nine unrelated pedigrees with similar deletions. The deletions were inherited in nine out of 12 patients, suggesting variable expressivity and incomplete penetrance. Four patients had tiny deletions involving only EPHA7, suggesting a critical role of EPHA7 in a neurodevelopmental disability phenotype. We provide further evidence for EPHA7 deletion as a risk factor for neurodevelopmental disorder and delineate its clinical phenotype.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Receptor EphA7/genética , Cromosomas Humanos Par 6 , Hibridación Genómica Comparativa , Femenino , Estudios de Asociación Genética/métodos , Humanos , Hibridación Fluorescente in Situ , Patrón de Herencia , Masculino , Mutación , Linaje , Secuenciación del Exoma
7.
J Med Genet ; 57(7): 466-474, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32277047

RESUMEN

PURPOSE: Marfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan-Fryns syndrome explain no more than 20% of subjects. METHODS: To further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic. RESULTS: We identified eight genes with de novo variants (DNVs) in at least two unrelated individuals (ARID1B, ATP1A1, DLG4, EHMT1, NFIX, NSD1, NUP205 and ZEB2). Using simulation models, we showed that five genes (DLG4, NFIX, EHMT1, ZEB2 and ATP1A1) met conservative Bonferroni genomewide significance for an excess of the observed de novo point variants. Overall, at least one pathogenic or likely pathogenic variant was identified in 54.7% of subjects (35/64). These variants fell within 27 genes previously associated with Mendelian disorders, including NSD1 and NFIX, which are known to be mutated in overgrowth syndromes. CONCLUSION: We demonstrated that DNVs were enriched in chromatin remodelling (p=2×10-4) and genes regulated by the fragile X mental retardation protein (p=3×10-8), highlighting overlapping genetic mechanisms between MHID and related neurodevelopmental disorders.


Asunto(s)
Anomalías Craneofaciales/genética , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Síndrome de Marfan/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Factores de Transcripción NFI/genética , Adolescente , Adulto , Niño , Ensamble y Desensamble de Cromatina , Anomalías Craneofaciales/patología , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Discapacidad Intelectual/patología , Masculino , Síndrome de Marfan/patología , Discapacidad Intelectual Ligada al Cromosoma X/patología , Persona de Mediana Edad , Mutación/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Secuenciación del Exoma , Adulto Joven
8.
J Med Genet ; 57(5): 301-307, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-30287593

RESUMEN

BACKGROUND: The clinical significance of 16p13.11 duplications remains controversial while frequently detected in patients with developmental delay (DD), intellectual deficiency (ID) or autism spectrum disorder (ASD). Previously reported patients were not or poorly characterised. The absence of consensual recommendations leads to interpretation discrepancy and makes genetic counselling challenging. This study aims to decipher the genotype-phenotype correlations to improve genetic counselling and patients' medical care. METHODS: We retrospectively analysed data from 16 013 patients referred to 12 genetic centers for DD, ID or ASD, and who had a chromosomal microarray analysis. The referring geneticists of patients for whom a 16p13.11 duplication was detected were asked to complete a questionnaire for detailed clinical and genetic data for the patients and their parents. RESULTS: Clinical features are mainly speech delay and learning disabilities followed by ASD. A significant risk of cardiovascular disease was noted. About 90% of the patients inherited the duplication from a parent. At least one out of four parents carrying the duplication displayed a similar phenotype to the propositus. Genotype-phenotype correlations show no impact of the size of the duplicated segment on the severity of the phenotype. However, NDE1 and miR-484 seem to have an essential role in the neurocognitive phenotype. CONCLUSION: Our study shows that 16p13.11 microduplications are likely pathogenic when detected in the context of DD/ID/ASD and supports an essential role of NDE1 and miR-484 in the neurocognitive phenotype. Moreover, it suggests the need for cardiac evaluation and follow-up and a large study to evaluate the aortic disease risk.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , MicroARNs/genética , Proteínas Asociadas a Microtúbulos/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Adolescente , Adulto , Trastorno del Espectro Autista/patología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Niño , Preescolar , Cromosomas Humanos Par 16/genética , Discapacidades del Desarrollo/patología , Femenino , Duplicación de Gen/genética , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Fenotipo , Factores de Riesgo , Adulto Joven
9.
Genet Med ; 21(4): 816-825, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30190612

RESUMEN

PURPOSE: To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. METHODS: We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. RESULTS: The number of rare likely deleterious variants in functionally intolerant genes ("other hits") correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with their carrier family members. Probands with 16p12.1 deletion and a strong family history presented more severe clinical features (p=0.04) and higher burden of other hits compared with those with mild/no family history (p=0.001). The number of other hits also correlated with severity of cognitive impairment in probands carrying pathogenic CNVs (n=53) or de novo pathogenic variants in disease genes (n=290), and negatively correlated with head size among 80 probands with 16p11.2 deletion. These co-occurring hits involved known disease-associated genes such as SETD5, AUTS2, and NRXN1, and were enriched for cellular and developmental processes. CONCLUSION: Accurate genetic diagnosis of complex disorders will require complete evaluation of the genetic background even after a candidate disease-associated variant is identified.


Asunto(s)
Trastorno Autístico/genética , Moléculas de Adhesión Celular Neuronal/genética , Tamización de Portadores Genéticos , Metiltransferasas/genética , Proteínas del Tejido Nervioso/genética , Proteínas/genética , Trastorno Autístico/fisiopatología , Proteínas de Unión al Calcio , Cromosomas Humanos Par 16/genética , Cognición/fisiología , Proteínas del Citoesqueleto , Variaciones en el Número de Copia de ADN/genética , Femenino , Regulación de la Expresión Génica/genética , Antecedentes Genéticos , Humanos , Masculino , Moléculas de Adhesión de Célula Nerviosa , Padres , Linaje , Fenotipo , Eliminación de Secuencia/genética , Hermanos , Factores de Transcripción
10.
Prenat Diagn ; 39(6): 464-470, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30896039

RESUMEN

OBJECTIVES: Congenital heart defects (CHDs) may be isolated or associated with other malformations. The use of chromosome microarray (CMA) can increase the genetic diagnostic yield for CHDs by between 4% and 10%. The objective of this study was to evaluate the value of CMA after the prenatal diagnosis of an isolated CHD. METHODS: In a retrospective, nationwide study performed in France, we collected data on all cases of isolated CHD that had been explored using CMAs in 2015. RESULTS: A total of 239 fetuses were included and 33 copy number variations (CNVs) were reported; 19 were considered to be pathogenic, six were variants of unknown significance, and eight were benign variants. The anomaly detection rate was 10.4% overall but ranged from 0% to 16.7% as a function of the isolated CHD in question. The known CNVs were 22q11.21 deletions (n = 10), 22q11.21 duplications (n = 2), 8p23 deletions (n = 2), an Alagille syndrome (n = 1), and a Kleefstra syndrome (n = 1). CONCLUSION: The additional diagnostic yield was clinically significant (3.1%), even when anomalies in the 22q11.21 region were not taken into account. Hence, patients with a suspected isolated CHD and a normal karyotype must be screened for chromosome anomalies other than 22q11.21 duplications and deletions.


Asunto(s)
Pruebas Genéticas/métodos , Cardiopatías Congénitas/genética , Análisis por Micromatrices/métodos , Diagnóstico Prenatal/métodos , Adulto , Aberraciones Cromosómicas , Cromosomas/química , Cromosomas/genética , Hibridación Genómica Comparativa/métodos , Variaciones en el Número de Copia de ADN , Femenino , Feto/química , Feto/metabolismo , Francia , Cardiopatías Congénitas/diagnóstico , Humanos , Cariotipificación , Embarazo , Estudios Retrospectivos , Síndrome
11.
Hum Mol Genet ; 24(23): 6603-13, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26358774

RESUMEN

Cohen Syndrome (CS) is a rare autosomal recessive disorder, with defective glycosylation secondary to mutations in the VPS13B gene, which encodes a protein of the Golgi apparatus. Besides congenital neutropenia, retinopathy and intellectual deficiency, CS patients are faced with truncal obesity. Metabolism investigations showed abnormal glucose tolerance tests and low HDL values in some patients, and these could be risk factors for the development of diabetes mellitus and/or cardiovascular complications. To understand the mechanisms involved in CS fat storage, we used two models of adipogenesis differentiation: (i) SGBS pre-adipocytes with VPS13B invalidation thanks to siRNA delivery and (ii) CS primary fibroblasts. In both models, VPS13B invalidation led to accelerated differentiation into fat cells, which was confirmed by the earlier and increased expression of specific adipogenic genes, consequent to the increased response of cells to insulin stimulation. At the end of the differentiation protocol, these fat cells exhibited decreased AKT2 phosphorylation after insulin stimulation, which suggests insulin resistance. This study, in association with the in-depth analysis of the metabolic status of the patients, thus allowed us to recommend appropriate nutritional education to prevent the occurrence of diabetes mellitus and to put forward recommendations for the follow-up of CS patients, in particular with regard to the development of metabolic syndrome. We also suggest replacing the term obesity by abnormal fat distribution in CS, which should reduce the number of inappropriate diagnoses in patients who are referred only on the basis of intellectual deficiency associated with obesity.


Asunto(s)
Adipogénesis , Distribución de la Grasa Corporal , Diabetes Mellitus Tipo 2/fisiopatología , Dedos/anomalías , Insulina/fisiología , Discapacidad Intelectual/fisiopatología , Microcefalia/fisiopatología , Hipotonía Muscular/fisiopatología , Miopía/fisiopatología , Obesidad/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/fisiopatología , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/etiología , Femenino , Dedos/fisiopatología , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Microcefalia/complicaciones , Persona de Mediana Edad , Modelos Biológicos , Hipotonía Muscular/complicaciones , Mutación , Miopía/complicaciones , Obesidad/complicaciones , Degeneración Retiniana , Riesgo , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Adulto Joven
12.
Hum Mol Genet ; 23(9): 2391-9, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24334764

RESUMEN

Cohen syndrome (CS) is a rare autosomal recessive disorder with multisytemic clinical features due to mutations in the VPS13B gene, which has recently been described encoding a mandatory membrane protein involved in Golgi integrity. As the Golgi complex is the place where glycosylation of newly synthesized proteins occurs, we hypothesized that VPS13B deficiency, responsible of Golgi apparatus disturbance, could lead to glycosylation defects and/or mysfunction of this organelle, and thus be a cause of the main clinical manifestations of CS. The glycosylation status of CS serum proteins showed a very unusual pattern of glycosylation characterized by a significant accumulation of agalactosylated fucosylated structures as well as asialylated fucosylated structures demonstrating a major defect of glycan maturation in CS. However, CS transferrin and α1-AT profiles, two liver-derived proteins, were normal. We also showed that intercellular cell adhesion molecule 1 and LAMP-2, two highly glycosylated cellular proteins, presented an altered migration profile on SDS-PAGE in peripheral blood mononuclear cells from CS patients. RNA interference against VPS13B confirmed these glycosylation defects. Experiments with Brefeldin A demonstrated that intracellular retrograde cell trafficking was normal in CS fibroblasts. Furthermore, early endosomes were almost absent in these cells and lysosomes were abnormally enlarged, suggesting a crucial role of VPS13B in endosomal-lysosomal trafficking. Our work provides evidence that CS is associated to a tissue-specific major defect of glycosylation and endosomal-lysosomal trafficking defect, suggesting that this could be a new key element to decipher the mechanisms of CS physiopathology.


Asunto(s)
Dedos/anomalías , Discapacidad Intelectual/metabolismo , Microcefalia/metabolismo , Hipotonía Muscular/metabolismo , Miopía/metabolismo , Obesidad/metabolismo , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Discapacidades del Desarrollo/metabolismo , Electroforesis en Gel de Poliacrilamida , Fibroblastos/metabolismo , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Interferencia de ARN , Degeneración Retiniana , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
13.
Am J Med Genet A ; 170A(1): 116-29, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26420639

RESUMEN

Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment.


Asunto(s)
Encefalopatías/genética , Cromosomas Humanos X/genética , Duplicación de Gen , Imagen por Resonancia Magnética/métodos , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/genética , Adolescente , Adulto , Encefalopatías/patología , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/patología , Persona de Mediana Edad , Linaje , Fenotipo , Pronóstico , Adulto Joven
14.
Genet Med ; 17(6): 460-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25232846

RESUMEN

PURPOSE: Submicroscopic deletions of chromosome band 2p25.3 are associated with intellectual disability and/or central obesity. Although MYT1L is believed to be a critical gene responsible for intellectual disability, so far no unequivocal data have confirmed this hypothesis. METHODS: In this study we evaluated a cohort of 22 patients (15 sporadic patients and two families) with a 2p25.3 aberration to further refine the clinical phenotype and to delineate the role of MYT1L in intellectual disability and obesity. In addition, myt1l spatiotemporal expression in zebrafish embryos was analyzed by quantitative polymerase chain reaction and whole-mount in situ hybridization. RESULTS: Complete MYT1L deletion, intragenic deletion, or duplication was observed in all sporadic patients, in addition to two patients with a de novo point mutation in MYT1L. The familial cases comprise a 6-Mb deletion in a father and his three children and a 5' MYT1L overlapping duplication in a father and his two children. Expression analysis in zebrafish embryos shows specific myt1l expression in the developing brain. CONCLUSION: Our data strongly strengthen the hypothesis that MYT1L is the causal gene for the observed syndromal intellectual disability. Moreover, because 17 patients present with obesity/overweight, haploinsufficiency of MYT1L might predispose to weight problems with childhood onset.Genet Med 17 6, 460-466.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 2 , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Obesidad/genética , Factores de Transcripción/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Mapeo Cromosómico , Estudios de Cohortes , Facies , Femenino , Duplicación de Gen , Expresión Génica , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Mutación Puntual , Adulto Joven , Pez Cebra
15.
J Med Genet ; 51(1): 21-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24133203

RESUMEN

BACKGROUND: Since the advent of array-CGH, numerous new microdeletional syndromes have been delineated while others remain to be described. Although 3q29 subtelomeric deletion is a well-described syndrome, there is no report on 3q interstitial deletions. METHODS: We report for the first time seven patients with interstitial deletions at the 3q27.3q28 locus gathered through the Decipher database, and suggest this locus as a new microdeletional syndrome. RESULTS: The patients shared a recognisable facial dysmorphism and marfanoid habitus, associated with psychosis and mild to severe intellectual disability (ID). Most of the patients had no delay in gross psychomotor acquisition, but had severe impaired communicative and adaptive skills. Two small regions of overlap were defined. The first one, located on the 3q27.3 locus and common to all patients, was associated with psychotic troubles and mood disorders as well as recognisable facial dysmorphism. This region comprised several candidate genes including SST, considered a candidate for the neuropsychiatric findings because of its implication in interneuronal migration and differentiation processes. A familial case with a smaller deletion allowed us to define a second region of overlap at the 3q27.3q28 locus for marfanoid habitus and severe ID. Indeed, the common morphological findings in the first four patients included skeletal features from the marfanoid spectrum: scoliosis (4/4), long and thin habitus with leanness (average Body Mass Index of 15 (18.5

Asunto(s)
Anomalías Múltiples/genética , Deleción Cromosómica , Cromosomas Humanos Par 3 , Discapacidad Intelectual/genética , Trastornos del Humor/genética , Anomalías Múltiples/diagnóstico , Adolescente , Adulto , Preescolar , Mapeo Cromosómico , Hibridación Genómica Comparativa , Facies , Femenino , Humanos , Lactante , Discapacidad Intelectual/diagnóstico , Masculino , Trastornos del Humor/diagnóstico , Fenotipo , Síndrome , Adulto Joven
16.
Am J Med Genet A ; 164A(12): 3027-34, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25258245

RESUMEN

Distal limb contractures (DLC) represent a heterogeneous clinical and genetic condition. Overall, 20-25% of the DLC are caused by mutations in genes encoding the muscle contractile apparatus. Large interstitial deletions of the 3p have already been diagnosed by standard chromosomal analysis, but not associated with a specific phenotype. We report on four patients with syndromic DLC presenting with a de novo 3p14.1p13 microdeletion. The clinical features associated multiple contractures, feeding problems, developmental delay, and intellectual disability. Facial dysmorphism was constant with low-set posteriorly rotated ears and blepharophimosis. Review of previously reported cases with a precise mapping of the deletions, documented a 250 kb smallest region of overlap (SRO) necessary for DLC. This region contained one gene, EIF4E3, the first three exons of the FOXP1 gene, and an intronic enhancer of FOXP1 named hs1149. Sanger sequencing and locus quantification of hs1149, EIF4E3, and FOXP1 in a cohort of 11 French patients affected by DLC appeared normal. In conclusion, we delineate a new microdeletion syndrome involving the 3p14.1p13 locus and associated with DLC and severe developmental delay.


Asunto(s)
Artrogriposis/epidemiología , Aberraciones Cromosómicas , Cromosomas Humanos Par 3/genética , Contractura/epidemiología , Contractura/genética , Extremidades/patología , Animales , Proteínas Portadoras/genética , Hibridación Genómica Comparativa , Contractura/patología , Femenino , Factores de Transcripción Forkhead/genética , Francia/epidemiología , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Represoras/genética , Síndrome
17.
medRxiv ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39252907

RESUMEN

Variable expressivity of disease-associated variants implies a role for secondary variants that modify clinical features. We assessed the effects of modifier variants towards clinical outcomes of 2,252 individuals with primary variants. Among 132 families with the 16p12.1 deletion, distinct rare and common variant classes conferred risk for specific developmental features, including short tandem repeats for neurological defects and SNVs for microcephaly, while additional disease-associated variants conferred multiple genetic diagnoses. Within disease and population cohorts of 773 individuals with the 16p12.1 deletion, we found opposing effects of secondary variants towards clinical features across ascertainments. Additional analysis of 1,479 probands with other primary variants, such as 16p11.2 deletion and CHD8 variants, and 1,084 without primary variants, showed that phenotypic associations differed by primary variant context and were influenced by synergistic interactions between primary and secondary variants. Our study provides a paradigm to dissect the genomic architecture of complex disorders towards personalized treatment.

18.
Am J Med Genet A ; 161A(7): 1594-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23704076

RESUMEN

We report on three males with de novo overlapping 7.5, 9.8, and 10 Mb duplication of chromosome 20q11.2. Together with another patient previously published in the literature with overlapping 20q11 microduplication, we show that such patients display common clinical features including metopic ridging/trigonocephaly, developmental delay, epicanthal folds, and short hands. The duplication comprised the ASXL1 gene, in which de novo heterozygous nonsense or truncating mutations have recently been reported in patients with Borhing-Opitz syndrome. Because of craniofacial features in common with Borhing-Opitz syndrome, in particular metopic ridging/trigonocephaly, we suggest that duplication of ASXL1 contributes to the phenotype. These observations suggest a novel microduplication syndrome, and reporting of additional patients with molecular characterization will allow more detailed genotype-phenotype correlations.


Asunto(s)
Craneosinostosis/genética , Proteínas Represoras/genética , Trisomía/genética , Niño , Preescolar , Cromosomas Humanos Par 20/genética , Discapacidades del Desarrollo/genética , Femenino , Deformidades Congénitas de la Mano/genética , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Mosaicismo , Mutación , Embarazo , Síndrome
19.
J Med Genet ; 49(12): 731-6, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23099646

RESUMEN

BACKGROUND: DYRK1A plays different functions during development, with an important role in controlling brain growth through neuronal proliferation and neurogenesis. It is expressed in a gene dosage dependent manner since dyrk1a haploinsufficiency induces a reduced brain size in mice, and DYRK1A overexpression is the candidate gene for intellectual disability (ID) and microcephaly in Down syndrome. We have identified a 69 kb deletion including the 5' region of the DYRK1A gene in a patient with growth retardation, primary microcephaly, facial dysmorphism, seizures, ataxic gait, absent speech and ID. Because four patients previously reported with intragenic DYRK1A rearrangements or 21q22 microdeletions including only DYRK1A presented with overlapping phenotypes, we hypothesised that DYRK1A mutations could be responsible for syndromic ID with severe microcephaly and epilepsy. METHODS: The DYRK1A gene was studied by direct sequencing and quantitative PCR in a cohort of 105 patients with ID and at least two symptoms from the Angelman syndrome spectrum (microcephaly < -2.5 SD, ataxic gait, seizures and speech delay). RESULTS: We identified a de novo frameshift mutation (c.290_291delCT; p.Ser97Cysfs*98) in a patient with growth retardation, primary severe microcephaly, delayed language, ID, and seizures. CONCLUSION: The identification of a truncating mutation in a patient with ID, severe microcephaly, epilepsy, and growth retardation, combined with its dual function in regulating the neural proliferation/neuronal differentiation, adds DYRK1A to the list of genes responsible for such a phenotype. ID, microcephaly, epilepsy, and language delay are the more specific features associated with DYRK1A abnormalities. DYRK1A studies should be discussed in patients presenting such a phenotype.


Asunto(s)
Epilepsia/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Electroencefalografía , Epilepsia/diagnóstico , Facies , Femenino , Orden Génico , Genotipo , Humanos , Discapacidad Intelectual/diagnóstico , Masculino , Microcefalia/diagnóstico , Fenotipo , Síndrome , Quinasas DyrK
20.
J Med Genet ; 49(6): 400-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22693284

RESUMEN

BACKGROUND: Non-progressive congenital ataxias (NPCA) with or without intellectual disability (ID) are clinically and genetically heterogeneous conditions. As a consequence, the identification of the genes responsible for these phenotypes remained limited. OBJECTIVE: Identification of a new gene responsible for NPCA and ID. Methods Following the discovery of three familial or sporadic cases with an intragenic calmodulin-binding transcription activator 1 (CAMTA1) rearrangement identified by an array-CGH and recruited from a national collaboration, the authors defined the clinical and molecular characteristics of such rearrangements, and searched for patients with point mutations by direct sequencing. RESULTS: Intragenic copy number variations of CAMTA1 were all located in the CG-1 domain of the gene. It segregated with autosomal dominant ID with non-progressive congenital cerebellar ataxia (NPCA) in two unrelated families, and was de novo deletion located in the same domain in a child presenting with NPCA. In the patients with ID, the deletion led to a frameshift, producing a truncated protein, while this was not the case for the patient with isolated childhood ataxia. Brain MRI of the patients revealed a pattern of progressive atrophy of cerebellum medium lobes and superior vermis, parietal lobes and hippocampi. DNA sequencing of the CG-1 domain in 197 patients with sporadic or familial non-syndromic intellectual deficiency, extended to full DNA sequencing in 50 patients with ID and 47 additional patients with childhood ataxia, identified no pathogenic mutation. CONCLUSION: The authors have evidence that loss-of-function of CAMTA1, a brain-specific calcium responsive transcription factor, is responsible for NPCA with or without ID. Accession numbers CAMTA1 reference sequence used was ENST00000303635. Protein sequence was ENSP00000306522.


Asunto(s)
Ataxia/genética , Proteínas de Unión al Calcio/genética , Discapacidad Intelectual/genética , Transactivadores/genética , Adolescente , Adulto , Preescolar , Variaciones en el Número de Copia de ADN , Femenino , Reordenamiento Génico , Humanos , Lactante , Persona de Mediana Edad , Linaje , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA