Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 148(3): 568-82, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22304922

RESUMEN

Growing axons encounter multiple guidance cues, but it is unclear how separate signals are resolved and integrated into coherent instructions for growth cone navigation. We report that glycosylphosphatidylinositol (GPI)-anchored ephrin-As function as "reverse" signaling receptors for motor axons when contacted by transmembrane EphAs present in the dorsal limb. Ephrin-A receptors are thought to depend on transmembrane coreceptors for transmitting signals intracellularly. We show that the receptor tyrosine kinase Ret is required for motor axon attraction mediated by ephrin-A reverse signaling. Ret also mediates GPI-anchored GFRα1 signaling in response to GDNF, a diffusible chemoattractant in the limb, indicating that Ret is a multifunctional coreceptor for guidance molecules. Axons respond synergistically to coactivation by GDNF and EphA ligands, and these cooperative interactions are gated by GFRα1 levels. Our studies uncover a hierarchical GPI-receptor signaling network that is constructed from combinatorial components and integrated through Ret using ligand coincidence detection.


Asunto(s)
Axones/metabolismo , Efrinas/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Embrión de Pollo , Embrión de Mamíferos/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Ratones , Neuronas Motoras/metabolismo , Ratas , Ratas Sprague-Dawley
2.
Gastroenterology ; 166(6): 1085-1099, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38452824

RESUMEN

BACKGROUND & AIMS: The enteric nervous system (ENS), the gut's intrinsic nervous system critical for gastrointestinal function and gut-brain communication, is believed to mainly originate from vagal neural crest cells (vNCCs) and partially from sacral NCCs (sNCCs). Resolving the exact origins of the ENS is critical for understanding congenital ENS diseases but has been confounded by the inability to distinguish between both NCC populations in situ. Here, we aimed to resolve the exact origins of the mammalian ENS. METHODS: We genetically engineered mouse embryos facilitating comparative lineage-tracing of either all (pan-) NCCs including vNCCs or caudal trunk and sNCCs (s/tNCCs) excluding vNCCs. This was combined with dual-lineage tracing and 3-dimensional reconstruction of pelvic plexus and hindgut to precisely pinpoint sNCC and vNCC contributions. We further used coculture assays to determine the specificity of cell migration from different neural tissues into the hindgut. RESULTS: Both pan-NCCs and s/tNCCs contributed to established NCC derivatives but only pan-NCCs contributed to the ENS. Dual-lineage tracing combined with 3-dimensional reconstruction revealed that s/tNCCs settle in complex patterns in pelvic plexus and hindgut-surrounding tissues, explaining previous confusion regarding their contributions. Coculture experiments revealed unspecific cell migration from autonomic, sensory, and neural tube explants into the hindgut. Lineage tracing of ENS precursors lastly provided complimentary evidence for an exclusive vNCC origin of the murine ENS. CONCLUSIONS: sNCCs do not contribute to the murine ENS, suggesting that the mammalian ENS exclusively originates from vNCCs. These results have immediate implications for comprehending (and devising treatments for) congenital ENS disorders, including Hirschsprung's disease.


Asunto(s)
Linaje de la Célula , Movimiento Celular , Sistema Nervioso Entérico , Cresta Neural , Animales , Cresta Neural/citología , Cresta Neural/embriología , Sistema Nervioso Entérico/embriología , Ratones , Técnicas de Cocultivo , Ratones Transgénicos , Nervio Vago/embriología , Sacro/inervación
3.
PLoS Biol ; 20(12): e3001923, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542664

RESUMEN

The ability of terrestrial vertebrates to effectively move on land is integrally linked to the diversification of motor neurons into types that generate muscle force (alpha motor neurons) and types that modulate muscle proprioception, a task that in mammals is chiefly mediated by gamma motor neurons. The diversification of motor neurons into alpha and gamma types and their respective contributions to movement control have been firmly established in the past 7 decades, while recent studies identified gene expression signatures linked to both motor neuron types. However, the mechanisms that promote the specification of gamma motor neurons and/or their unique properties remained unaddressed. Here, we found that upon selective loss of the orphan nuclear receptors ERR2 and ERR3 (also known as ERRß, ERRγ or NR3B2, NR3B3, respectively) in motor neurons in mice, morphologically distinguishable gamma motor neurons are generated but do not acquire characteristic functional properties necessary for regulating muscle proprioception, thus disrupting gait and precision movements. Complementary gain-of-function experiments in chick suggest that ERR2 and ERR3 could operate via transcriptional activation of neural activity modulators to promote a gamma motor neuron biophysical signature of low firing thresholds and high firing rates. Our work identifies a mechanism specifying gamma motor neuron functional properties essential for the regulation of proprioceptive movement control.


Asunto(s)
Neuronas Motoras gamma , Receptores de Estrógenos , Animales , Ratones , Neuronas Motoras gamma/fisiología , Movimiento , Músculos , Propiocepción , Receptores de Estrógenos/metabolismo
4.
EMBO J ; 35(18): 2008-25, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27497298

RESUMEN

Mutations in the FBXO7 (PARK15) gene have been implicated in a juvenile form of parkinsonism termed parkinsonian pyramidal syndrome (PPS), characterized by Parkinsonian symptoms and pyramidal tract signs. FBXO7 (F-box protein only 7) is a subunit of the SCF (SKP1/cullin-1/F-box protein) E3 ubiquitin ligase complex, but its relevance and function in neurons remain to be elucidated. Here, we report that the E3 ligase FBXO7-SCF binds to and ubiquitinates the proteasomal subunit PSMA2. In addition, we show that FBXO7 is a proteasome-associated protein involved in proteasome assembly. In FBXO7 knockout mice, we find reduced proteasome activity and early-onset motor deficits together with premature death. In addition, we demonstrate that NEX (neuronal helix-loop-helix protein-1)-Cre-induced deletion of the FBXO7 gene in forebrain neurons or the loss of FBXO7 in tyrosine hydroxylase (TH)-positive neurons results in motor defects, reminiscent of the phenotype in PARK15 patients. Taken together, our study establishes a vital role for FBXO7 in neurons, which is required for proper motor control and accentuates the importance of FBXO7 in proteasome function.


Asunto(s)
Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Técnicas de Inactivación de Genes , Trastornos Parkinsonianos/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Ratones Noqueados , Procesamiento Proteico-Postraduccional , Ubiquitinación
5.
Proc Natl Acad Sci U S A ; 113(3): 746-50, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26733679

RESUMEN

The distribution and function of sympathetic innervation in skeletal muscle have largely remained elusive. Here we demonstrate that sympathetic neurons make close contact with neuromuscular junctions and form a network in skeletal muscle that may functionally couple different targets including blood vessels, motor neurons, and muscle fibers. Direct stimulation of sympathetic neurons led to activation of muscle postsynaptic ß2-adrenoreceptor (ADRB2), cAMP production, and import of the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PPARGC1A) into myonuclei. Electrophysiological and morphological deficits of neuromuscular junctions upon sympathectomy and in myasthenic mice were rescued by sympathicomimetic treatment. In conclusion, this study identifies the neuromuscular junction as a target of the sympathetic nervous system and shows that sympathetic input is crucial for synapse maintenance and function.


Asunto(s)
Salud , Homeostasis , Enfermedades del Sistema Nervioso/patología , Unión Neuromuscular/patología , Sistema Nervioso Simpático/patología , Transporte Activo de Núcleo Celular , Animales , Técnicas Biosensibles , Núcleo Celular/metabolismo , AMP Cíclico/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Músculo Esquelético/inervación , Unión Neuromuscular/metabolismo , Neuronas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fenotipo , Transducción de Señal , Simpatectomía , Sistema Nervioso Simpático/metabolismo , Factores de Transcripción/metabolismo
6.
Development ; 141(9): 1875-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24700820

RESUMEN

In gnathostome vertebrates, including fish, birds and mammals, peripheral nerves link nervous system, body and immediate environment by integrating efferent pathways controlling movement apparatus or organ function and afferent pathways underlying somatosensation. Several lines of evidence suggest that peripheral nerve assembly involves instructive interactions between efferent and afferent axon types, but conflicting findings challenge this view. Using genetic modeling in zebrafish, chick and mouse we uncover here a conserved hierarchy of axon type-dependent extension and selective fasciculation events that govern peripheral nerve assembly, which recapitulates the successive phylogenetic emergence of peripheral axon types and circuits in the vertebrate lineage.


Asunto(s)
Axones/fisiología , Nervios Periféricos/embriología , Animales , Embrión de Pollo , Pollos , Dermis/inervación , Ratones , Neuronas Motoras/fisiología , Neuronas Aferentes/fisiología , Neuronas Eferentes/fisiología , Nervios Periféricos/fisiología , Pez Cebra/embriología
7.
J Neurosci ; 35(6): 2596-611, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25673852

RESUMEN

Hindbrain dorsal interneurons (HDIs) are implicated in receiving, processing, integrating, and transmitting sensory inputs from the periphery and spinal cord, including the vestibular, auditory, and proprioceptive systems. During development, multiple molecularly defined HDI types are set in columns along the dorsoventral axis, before migrating along well-defined trajectories to generate various brainstem nuclei. Major brainstem functions rely on the precise assembly of different interneuron groups and higher brain domains into common circuitries. Yet, knowledge regarding interneuron axonal patterns, synaptic targets, and the transcriptional control that govern their connectivity is sparse. The dB1 class of HDIs is formed in a district dorsomedial position along the hindbrain and gives rise to the inferior olive nuclei, dorsal cochlear nuclei, and vestibular nuclei. dB1 interneurons express various transcription factors (TFs): the pancreatic transcription factor 1a (Ptf1a), the homeobox TF-Lbx1 and the Lim-homeodomain (Lim-HD), and TF Lhx1 and Lhx5. To decipher the axonal and synaptic connectivity of dB1 cells, we have used advanced enhancer tools combined with conditional expression systems and the PiggyBac-mediated DNA transposition system in avian embryos. Multiple ipsilateral and contralateral axonal projections were identified ascending toward higher brain centers, where they formed synapses in the Purkinje cerebellar layer as well as at discrete midbrain auditory and vestibular centers. Decoding the mechanisms that instruct dB1 circuit formation revealed a fundamental role for Lim-HD proteins in regulating their axonal patterns, synaptic targets, and neurotransmitter choice. Together, this study provides new insights into the assembly and heterogeneity of HDIs connectivity and its establishment through the central action of Lim-HD governed programs.


Asunto(s)
Axones/fisiología , Proteínas con Homeodominio LIM/fisiología , Neurotransmisores/fisiología , Rombencéfalo/citología , Rombencéfalo/crecimiento & desarrollo , Animales , Recuento de Células , Embrión de Pollo , Interneuronas/fisiología , Proteínas del Tejido Nervioso/fisiología , Vías Nerviosas/citología , Neuronas/fisiología , Sinapsis/fisiología , Factores de Transcripción/fisiología
8.
Proc Natl Acad Sci U S A ; 105(1): 335-40, 2008 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-18162555

RESUMEN

In the neurogenic phase of CNS development, the proliferating progenitors are found medially within the neuroepithelium. The adherens junctions on the apical membrane of proliferating neural progenitors allow for cell-cell adhesion and medial stratification. In contrast, differentiating neuronal precursors delaminate and migrate laterally, establishing the laminar layers. Apical adherens junctions also establish the apical-basal polarity in neural progenitors, which in turn is postulated to lead to asymmetric inheritance of cell fate determinants during neurogenic divisions. The signaling pathways and cellular mechanisms that regulate the assembly and asymmetric localization of adherens junctions in neural progenitors remain elusive. Here we show that atypical PKCzeta/lambda (aPKCzeta/lambda) localizes at the apical membrane of proliferating neural stem cells, but not postmitotic neuronal precursors, in the developing chicken neural tube. This precise subcellular compartmentalization of the kinase activity provides an instructive signal for apical assembly of adherens junctions in a PI3K, Rac/Cdc42 signaling-dependent pathway. Apical aPKCzeta coordinates neural stem cell proliferation and the overall stratification of cell types within the neural tube.


Asunto(s)
Uniones Adherentes/metabolismo , Neuronas/metabolismo , Proteína Quinasa C/metabolismo , Células Madre/citología , Animales , Encéfalo/embriología , Diferenciación Celular , Membrana Celular/metabolismo , Inmunohistoquímica/métodos , Ratones , Microscopía Fluorescente , Modelos Biológicos , Tubo Neural/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Células Madre/metabolismo
9.
Transl Psychiatry ; 11(1): 514, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625536

RESUMEN

MicroRNAs have been linked to synaptic plasticity and memory function and are emerging as potential biomarkers and therapeutic targets for cognitive diseases. Most of these data stem from the analysis of model systems or postmortem tissue from patients which mainly represents an advanced stage of pathology. Due to the in-accessibility of human brain tissue upon experimental manipulation, it is still challenging to identify microRNAs relevant to human cognition, which is however a key step for future translational studies. Here, we employ exercise as an experimental model for memory enhancement in healthy humans with the aim to identify microRNAs linked to memory function. By analyzing the circulating smallRNAome we find a cluster of 18 microRNAs that are highly correlated to cognition. MicroRNA-409-5p and microRNA-501-3p were the most significantly regulated candidates. Functional analysis revealed that the two microRNAs are important for neuronal integrity, synaptic plasticity, and morphology. In conclusion, we provide a novel approach to identify microRNAs linked to human memory function.


Asunto(s)
MicroARNs , Biomarcadores , Cognición , Ejercicio Físico , Humanos , MicroARNs/genética , Plasticidad Neuronal
10.
Mol Cell Biol ; 27(21): 7497-510, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17724084

RESUMEN

Activating protein 2alpha (AP-2alpha) is known to be expressed in the retina, and AP-2alpha-null mice exhibit defects in the developing optic cup, including patterning of the neural retina (NR) and a replacement of the dorsal retinal pigmented epithelium (RPE) with NR. In this study, we analyzed the temporal and spatial retinal expression patterns of AP-2alpha and created a conditional deletion of AP-2alpha in the developing retina. AP-2alpha exhibited a distinct expression pattern in the developing inner nuclear layer of the retina, and colocalization studies indicated that AP-2alpha was exclusively expressed in postmitotic amacrine cell populations. Targeted deletion of AP-2alpha in the developing retina did not result in observable retinal defects. Further examination of AP-2alpha-null mutants revealed that the severity of the RPE defect was variable and, although defects in retinal lamination occur at later embryonic stages, earlier stages showed normal lamination and expression of markers for amacrine and ganglion cells. Together, these data demonstrate that, whereas AP-2alpha alone does not play an intrinsic role in retinogenesis, it has non-cell-autonomous effects on optic cup development. Additional expression analyses showed that multiple AP-2 proteins are present in the developing retina, which will be important to future studies.


Asunto(s)
Eliminación de Gen , Retina/citología , Retina/embriología , Factor de Transcripción AP-2/deficiencia , Factor de Transcripción AP-2/metabolismo , Células Amacrinas/citología , Animales , Calbindina 2 , Recuento de Células , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Ganglios Sensoriales/citología , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Integrasas/metabolismo , Ratones , Mitosis , Especificidad de Órganos , Organogénesis , Transporte de Proteínas , Retina/enzimología , Proteína G de Unión al Calcio S100/metabolismo , Sintaxina 1/metabolismo , Factor de Transcripción AP-2/genética
11.
Trends Neurosci ; 25(1): 32-8, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11801336

RESUMEN

Visual perception of our environment essentially depends on the correct assembly of seven principal cell types into the functional architecture of the neuroretina. During retinogenesis these cell types derive from a common population of multipotent retinal progenitor cells (RPCs) residing in the inner layer of the optic cup. In contrast to other well studied regions of the developing CNS, retinal cell diversification is apparently not achieved by spatial prepatterning into distinct progenitor domains, but rather by the sequential production of cell types in a defined histogenetic order. Several lines of evidence suggest that this observation reflects substantial intrinsic changes in the retinogenic potential of RPCs. Recent advances, however, point at the existence of a common molecular framework underlying the retinogenic potential of RPCs throughout retinal neurogenesis.


Asunto(s)
Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Neuronas/metabolismo , Retina/embriología , Células Madre/metabolismo , Animales , Linaje de la Célula/genética , Proteínas del Ojo , Secuencias Hélice-Asa-Hélice/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Neuronas/citología , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box , Proteínas Represoras , Retina/citología , Retina/metabolismo , Células Madre/citología
12.
Prog Retin Eye Res ; 22(5): 567-77, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12892642

RESUMEN

During embryonic development, the array of vastly different neuronal types that are incorporated into the functional architecture of the mature neuroretina derives from a common population of multipotent retinal progenitor cells (RPCs). Retinogenesis proceeds in a precise chronological order, with the seven principal cell classes generated in successive phases. Cell biological experiments established that this histogenetic order, at least in part, reflects intrinsic changes within the RPC pool. In recent years a number of molecules controlling various aspects of cell fate specification from RPCs have been identified. However, few attempts have been made to integrate previous concepts that emerged from cell biological studies and more recent results based on molecular genetic experiments. This review aims at providing an overview of recent advances in our understanding of the cellular and molecular mechanisms underlying retinal neuronal diversification, with a particular focus on cell-intrinsic factors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/citología , Retina/embriología , Transcripción Genética/fisiología , Animales , Humanos , Células Madre/citología , Factores de Transcripción/fisiología
13.
Science ; 343(6176): 1264-6, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24626931

RESUMEN

Motor neurons, which relay neural commands to drive skeletal muscle movements, encompass types ranging from "slow" to "fast," whose biophysical properties govern the timing, gradation, and amplitude of muscle force. Here we identify the noncanonical Notch ligand Delta-like homolog 1 (Dlk1) as a determinant of motor neuron functional diversification. Dlk1, expressed by ~30% of motor neurons, is necessary and sufficient to promote a fast biophysical signature in the mouse and chick. Dlk1 suppresses Notch signaling and activates expression of the K(+) channel subunit Kcng4 to modulate delayed-rectifier currents. Dlk1 inactivation comprehensively shifts motor neurons toward slow biophysical and transcriptome signatures, while abolishing peak force outputs. Our findings provide insights into the development of motor neuron functional diversity and its contribution to the execution of movements.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/fisiología , Neuronas Motoras/metabolismo , Músculo Esquelético/fisiología , Receptores Notch/fisiología , Animales , Proteínas de Unión al Calcio , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Noqueados , Movimiento , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/inervación , Canales de Potasio con Entrada de Voltaje/genética , Transducción de Señal , Transcriptoma
14.
Curr Opin Neurobiol ; 23(6): 974-82, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23973157

RESUMEN

A remarkable feature of nervous system development is the ability of axons emerging from newly formed neurons to traverse, by cellular scale, colossal distances to appropriate targets. The earliest axons achieve this in an essentially axon-free environment, but the vast majority of axons eventually grow along a scaffold of nerve tracts created by earlier extending axons. Signal exchange between sequentially or simultaneously extending axons may well represent the predominant mode of axonal navigation, but proportionally few efforts have so far been directed at deciphering the underlying mechanisms. This review intends to provide a conceptual update on the cellular and molecular principles driving axon-axon interactions, with emphasis on those contributing to the fidelity of axonal navigation, sorting and connectivity during nerve and circuit assembly.


Asunto(s)
Axones/fisiología , Comunicación Celular/fisiología , Neurogénesis/fisiología , Transducción de Señal/fisiología , Animales , Humanos
15.
Nat Protoc ; 7(2): 351-63, 2012 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-22281870

RESUMEN

This protocol describes an optimized method for direct in vitro monitoring of homo- and heterotypic axon-axon interactions involved in the developmental assembly of neural circuits. The assay exploits a classical example of heterotypic axonal interactions by modeling the sequential extension of spinal motor and somatosensory neuron axons, but the procedure should be readily adaptable to other neuron types. The protocol is based on the rapid isolation and primary culture of genetically identified motor neurons combined with straightforward vital dye labeling and culture of dorsal root ganglion sensory neurons. Subsequently, axonal interactions are directly monitored via live fluorescence microscopy, whereas axon type identities can be unambiguously delineated throughout the experiments. Through chemical compound application or by using neurons derived from genetically engineered mice, the protocol facilitates the dissection of molecular pathways driving the axonal interactions that are crucial for neural pathway and circuit assembly. The whole procedure can be completed in 3 d.


Asunto(s)
Axones/fisiología , Comunicación Celular , Microscopía Fluorescente/métodos , Animales , Axones/metabolismo , Técnicas de Cultivo de Célula , Embrión de Mamíferos/citología , Ratones , Ratones Transgénicos
16.
Neuron ; 71(2): 263-77, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21791286

RESUMEN

It is a long-standing question how developing motor and sensory neuron projections cooperatively form a common principal grid of peripheral nerve pathways relaying behavioral outputs and somatosensory inputs. Here, we explored this issue through targeted cell lineage and gene manipulation in mouse, combined with in vitro live axon imaging. In the absence of motor projections, dorsal (epaxial) and ventral (hypaxial) sensory projections form in a randomized manner, while removal of EphA3/4 receptor tyrosine kinases expressed by epaxial motor axons triggers selective failure to form epaxial sensory projections. EphA3/4 act non-cell-autonomously by inducing sensory axons to track along preformed epaxial motor projections. This involves cognate ephrin-A proteins on sensory axons but is independent from EphA3/4 signaling in motor axons proper. Assembly of peripheral nerve pathways thus involves motor axon subtype-specific signals that couple sensory projections to discrete motor pathways.


Asunto(s)
Axones/metabolismo , Neuronas Motoras/citología , Sistema Nervioso Periférico/citología , Células Receptoras Sensoriales/citología , Animales , Axones/efectos de los fármacos , Embrión de Mamíferos , Ganglios Espinales/citología , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Técnicas In Vitro , Ratones , Ratones Transgénicos , Factor de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptor EphA3/metabolismo , Receptor EphA3/farmacología , Factor de Transcripción Brn-3A/genética , Factores de Transcripción/genética , Tubulina (Proteína)/metabolismo
17.
PLoS One ; 5(8): e12247, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-20806063

RESUMEN

Alteration and/or mutations of the ribonucleoprotein TDP-43 have been firmly linked to human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The relative impacts of TDP-43 alteration, mutation, or inherent protein function on neural integrity, however, remain less clear--a situation confounded by conflicting reports based on transient and/or random-insertion transgenic expression. We therefore performed a stringent comparative investigation of impacts of these TDP-43 modifications on neural integrity in vivo. To achieve this, we systematically screened ALS/FTLD-associated and synthetic TDP-43 isoforms via same-site gene insertion and neural expression in Drosophila; followed by transposon-based motor neuron-specific transgenesis in a chick vertebrate system. Using this bi-systemic approach we uncovered a requirement of inherent TDP-43 RNA-binding function--but not ALS/FTLD-linked mutation, mislocalization, or truncation--for TDP-43-mediated neurotoxicity in vivo.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neuronas/metabolismo , ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Línea Celular , Pollos/genética , Pollos/metabolismo , Pollos/fisiología , Proteínas de Unión al ADN/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Degeneración Lobar Frontotemporal/genética , Regulación de la Expresión Génica , Humanos , Espacio Intracelular/metabolismo , Locomoción , Longevidad , Masculino , Neuronas Motoras/metabolismo , Mutación , Neuronas/citología , Especificidad de Órganos , Unión Proteica , Transporte de Proteínas
18.
Science ; 320(5873): 233-6, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18403711

RESUMEN

Execution of motor behaviors relies on circuitries effectively integrating immediate sensory feedback to efferent pathways controlling muscle activity. It remains unclear how, during neuromuscular circuit assembly, sensory and motor projections become incorporated into tightly coordinated, yet functionally separate pathways. We report that, within axial nerves, establishment of discrete afferent and efferent pathways depends on coordinate signaling between coextending sensory and motor projections. These heterotypic axon-axon interactions require motor axonal EphA3/EphA4 receptor tyrosine kinases activated by cognate sensory axonal ephrin-A ligands. Genetic elimination of trans-axonal ephrin-A --> EphA signaling in mice triggers drastic motor-sensory miswiring, culminating in functional efferents within proximal afferent pathways. Effective assembly of a key circuit underlying motor behaviors thus critically depends on trans-axonal signaling interactions resolving motor and sensory projections into discrete pathways.


Asunto(s)
Axones/fisiología , Efrinas/metabolismo , Neuronas Motoras/fisiología , Neuronas Aferentes/fisiología , Receptor EphA3/metabolismo , Receptor EphA4/metabolismo , Vías Aferentes/fisiología , Animales , Células Cultivadas , Técnicas de Cocultivo , Vías Eferentes/fisiología , Electrofisiología , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Conos de Crecimiento/fisiología , Ligandos , Ratones , Ratones Transgénicos , Actividad Motora , Músculo Esquelético/inervación , Mutación , Nervios Periféricos/citología , Nervios Periféricos/fisiología , Receptor EphA3/genética , Receptor EphA4/genética , Transducción de Señal
19.
Development ; 135(24): 4037-4047, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19004853

RESUMEN

Throughout the developing central nervous system, pre-patterning of the ventricular zone into discrete neural progenitor domains is one of the predominant strategies used to produce neuronal diversity in a spatially coordinated manner. In the retina, neurogenesis proceeds in an intricate chronological and spatial sequence, yet it remains unclear whether retinal progenitor cells (RPCs) display intrinsic heterogeneity at any given time point. Here, we performed a detailed study of RPC fate upon temporally and spatially confined inactivation of Pax6. Timed genetic removal of Pax6 appeared to unmask a cryptic divergence of RPCs into qualitatively divergent progenitor pools. In the more peripheral RPCs under normal circumstances, Pax6 seemed to prevent premature activation of a photoreceptor-differentiation pathway by suppressing expression of the transcription factor Crx. More centrally, Pax6 contributed to the execution of the comprehensive potential of RPCs: Pax6 ablation resulted in the exclusive generation of amacrine interneurons. Together, these data suggest an intricate dual role for Pax6 in retinal neurogenesis, while pointing to the cryptic divergence of RPCs into distinct progenitor pools.


Asunto(s)
Proteínas del Ojo/fisiología , Proteínas de Homeodominio/fisiología , Factores de Transcripción Paired Box/fisiología , Proteínas Represoras/fisiología , Retina/embriología , Animales , Secuencia de Bases , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Cartilla de ADN/genética , Células Madre Embrionarias/clasificación , Células Madre Embrionarias/citología , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Ratones Transgénicos , Modelos Neurológicos , Mutación , Neurogénesis/genética , Neurogénesis/fisiología , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/deficiencia , Factores de Transcripción Paired Box/genética , Células Fotorreceptoras de Vertebrados/citología , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Retina/citología , Neuronas Retinianas/citología , Transactivadores/genética
20.
Dev Biol ; 304(2): 713-21, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17316600

RESUMEN

Retinal stem cells (RSCs) exist as rare pigmented ciliary epithelial cells in adult mammalian eyes. We hypothesized that RSCs are at the top of the retinal cell lineage. Thus, genes expressed early in embryonic development to establish the retinal field in forebrain neuroectoderm may play important roles in RSCs. Pax6, a paired domain and homeodomain-containing transcription factor, is one of the earliest genes expressed in the eye field and is considered a master control gene for retinal and eye development. Here, we demonstrate that Pax6 is enriched in RSCs. Inactivation of Pax6 in vivo results in loss of competent RSCs as assayed by the failure to form clonal RSC spheres from the optic vesicles of conventional Pax6 knockout embryos and from the ciliary epithelial cells of adult Pax6 conditional knockout mice. In vitro clonal inactivation of Pax6 in adult RSCs results in a serious proliferation defect, suggesting that Pax6 is required for the proliferation and expansion of RSCs.


Asunto(s)
Proliferación Celular , Células Epiteliales/citología , Proteínas del Ojo/fisiología , Proteínas de Homeodominio/fisiología , Factores de Transcripción Paired Box/fisiología , Proteínas Represoras/fisiología , Retina/citología , Células Madre/citología , Animales , Células Epiteliales/metabolismo , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Retina/embriología , Retina/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA