Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Intervalo de año de publicación
1.
Am Nat ; 203(4): E107-E127, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38489775

RESUMEN

AbstractUnderstanding and predicting the evolutionary responses of complex morphological traits to selection remains a major challenge in evolutionary biology. Because traits are genetically correlated, selection on a particular trait produces both direct effects on the distribution of that trait and indirect effects on other traits in the population. The correlations between traits can strongly impact evolutionary responses to selection and may thus impose constraints on adaptation. Here, we used museum specimens and comparative quantitative genetic approaches to investigate whether the covariation among cranial traits facilitated or constrained the response to selection during the major dietary transitions in one of the world's most ecologically diverse mammalian families-the phyllostomid bats. We reconstructed the set of net selection gradients that would have acted on each cranial trait during the major transitions to feeding specializations and decomposed the selection responses into their direct and indirect components. We found that for all transitions, most traits capturing craniofacial length evolved toward adaptive directions owing to direct selection. Additionally, we showed instances of dietary transitions in which the complex interaction between the patterns of covariation among traits and the strength and direction of selection either constrained or facilitated evolution. Our work highlights the importance of considering the within-species covariation estimates to quantify evolvability and to disentangle the relative contribution of variational constraints versus selective causes for observed patterns.


Asunto(s)
Quirópteros , Selección Genética , Humanos , Animales , Quirópteros/genética , Fenotipo , Hojas de la Planta , Evolución Biológica
2.
Proc Biol Sci ; 289(1967): 20212521, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35042420

RESUMEN

The prevalence of stasis on macroevolution has been classically taken as evidence of the strong role of stabilizing selection in constraining morphological change. Rates of evolution calculated over longer timescales tend to fall below the expected under genetic drift, suggesting that directional selection signals are erased at longer timescales. Here, we investigated the rates of morphological evolution of the skull in a fossil lineage that underwent extreme morphological modification, the glyptodonts. Contrary to what was expected, we show here that directional selection was the primary process during the evolution of glyptodonts. Furthermore, the reconstruction of selection patterns shows that traits selected to generate a glyptodont morphology are markedly different from those operating on extant armadillos. Changes in both direction and magnitude of selection are probably tied to glyptodonts' invasion of a specialist-herbivore adaptive zone. These results suggest that directional selection might have played a more critical role in the evolution of extreme morphologies than previously imagined.


Asunto(s)
Xenarthra , Animales , Evolución Biológica , Fósiles , Fenotipo , Selección Genética , Cráneo/anatomía & histología
3.
Proc Biol Sci ; 289(1966): 20212300, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35016544

RESUMEN

Selective regimes favouring the evolution of functional specialization probably affect covariation among phenotypic traits. Phalanges of most tetrapods develop from a conserved module that constrains their relative proportions. In geckos, however, biomechanical specializations associated with adhesive toepads involve morphological variation in the autopodium and might reorganize such modular structures. We tested two hypotheses to explain the modular architecture of hand bones in geckos, one based on developmental interactions and another incorporating functional associations related to locomotion, and compared the empirical support for each hypothetical module between padded and padless lineages. We found strong evidence for developmental modules in most species, which probably reflects embryological constraints during phalangeal formation. Although padded geckos exhibit a functional specialization involving the hyperextension of the distal phalanges that is absent in padless species, the padless species are the ones that show a distal functional module with high integration. Some ancestrally padless geckos apparently deviate from developmental predictions and present a relatively weak developmental module of phalanges and a strongly integrated distal module, which may reflect selective regimes involving incipient frictional adhesion in digit morphology. Modularity of digit elements seems dynamic along the evolutionary history of geckos, being associated with the presence/absence of adhesive toepads.


Asunto(s)
Lagartos , Animales , Evolución Biológica , Huesos/anatomía & histología , Extremidades , Lagartos/anatomía & histología , Locomoción
4.
J Hered ; 110(4): 479-493, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30986303

RESUMEN

Multivariate quantitative genetics provides a powerful framework for understanding patterns and processes of phenotypic evolution. Quantitative genetics parameters, like trait heritability or the G-matrix for sets of traits, can be used to predict evolutionary response or to understand the evolutionary history of a population. These population-level approaches have proven to be extremely successful, but the underlying genetics of multivariate variation and evolutionary change typically remain a black box. Establishing a deeper empirical understanding of how individual genetic effects lead to genetic (co)variation is then crucial to our understanding of the evolutionary process. To delve into this black box, we exploit an experimental population of mice composed from lineages derived by artificial selection. We develop an approach to estimate the multivariate effect of loci and characterize these vectors of effects in terms of their magnitude and alignment with the direction of evolutionary divergence. Using these estimates, we reconstruct the traits in the ancestral populations and quantify how much of the divergence is due to genetic effects. Finally, we also use these vectors to decompose patterns of genetic covariation and examine the relationship between these components and the corresponding distribution of pleiotropic effects. We find that additive effects are much larger than dominance effects and are more closely aligned with the direction of selection and divergence, with larger effects being more aligned than smaller effects. Pleiotropic effects are highly variable but are, on average, modular. These results are consistent with pleiotropy being partly shaped by selection while reflecting underlying developmental constraints.


Asunto(s)
Evolución Biológica , Pleiotropía Genética , Variación Genética , Genómica , Algoritmos , Mapeo Cromosómico , Cruzamientos Genéticos , Estudios de Asociación Genética , Genética de Población , Genómica/métodos , Modelos Genéticos , Fenotipo , Sitios de Carácter Cuantitativo , Selección Genética
5.
Proc Natl Acad Sci U S A ; 112(2): 470-5, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548154

RESUMEN

Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Selección Genética , Simulación por Computador , Flujo Genético , Variación Genética , Genética de Población , Mutación , Densidad de Población , Carácter Cuantitativo Heredable
6.
Annu Rev Ecol Evol Syst ; 47: 463-486, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28966564

RESUMEN

Modularity has emerged as a central concept for evolutionary biology, providing the field with a theory of organismal structure and variation. This theory has reframed long standing questions and serves as a unified conceptual framework for genetics, developmental biology and multivariate evolution. Research programs in systems biology and quantitative genetics are bridging the gap between these fields. While this synthesis is ongoing, some major themes have emerged and empirical evidence for modularity has become abundant. In this review, we look at modularity from an historical perspective, highlighting its meaning at different levels of biological organization and the different methods that can be used to detect it. We then explore the relationship between quantitative genetic approaches to modularity and developmental genetic studies. We conclude by investigating the dynamic relationship between modularity and the adaptive landscape and how this potentially shapes evolution and can help bridge the gap between micro- and macroevolution.

7.
Mol Phylogenet Evol ; 108: 61-69, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28189619

RESUMEN

We investigate the biogeographic processes related to the origin and current patterns of distribution of the extant species of the genus Pteronotus. This clade of insectivorous bats is widely distributed in the Neotropical Region and has recently gone through a taxonomic update which increased more than twice its diversity. Using six molecular markers of 15 Pteronotus lineages ranging from Mexico to Central Brazil, we reconstruct a time-calibrated tree and infer molecular evolutionary rates for this bat genus. In addition, estimates of range evolution across phylogeny were obtained through statistical model testing among six different biogeographic models. The origin of the genus Pteronotus occurred approximately 16million years ago (Ma), with initial cladogenesis events being evenly distributed across the phylogeny. Divergence between most closely related species is recent, falling in the Pleistocene period less than 2.6Ma. Mainland lineages present congruent patterns of north versus south continent splitting while insular clades differ in their time of arrival in the Caribbean Islands. Temporal and geographic range estimates for early nodes of Pteronotus phylogeny suggest a central role of Neogene tectonic reorganizations of Central America in the group diversification process. Also, South American colonization by Pteronotus occurred early in the genus history. Founder-event speciation was an important mode of lineage splitting in Pteronotus, with two independent dispersal jumps having occurred to the Greater Antilles. Finally, Pleistocenic sea-level variation and climatic oscillations are possibly associated with divergence between sister-species and recent ages of MRCA for Pteronotus species.


Asunto(s)
Quirópteros/clasificación , Quirópteros/genética , Variación Genética , Clima Tropical , Animales , Sitios Genéticos , Funciones de Verosimilitud , Filogenia , Filogeografía , Factores de Tiempo
8.
Proc Biol Sci ; 283(1841)2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27798306

RESUMEN

Interactions among traits that build a complex structure may be represented as genetic covariation and correlation. Genetic correlations may act as constraints, deflecting the evolutionary response from the direction of natural selection. We investigated the relative importance of drift, selection, and constraints in driving skull divergence in a group of related toad species. The distributional range of these species encompasses very distinct habitats with important climatic differences and the species are primarily distinguished by differences in their skulls. Some parts of the toad skull, such as the snout, may have functional relevance in reproductive ecology, detecting water cues. Thus, we hypothesized that the species skull divergence was driven by natural selection associated with climatic variation. However, given that all species present high correlations among skull traits, our second prediction was of high constraints deflecting the response to selection. We first extracted the main morphological direction that is expected to be subjected to selection by using within- and between-species covariance matrices. We then used evolutionary regressions to investigate whether divergence along this direction is explained by climatic variation between species. We also used quantitative genetics models to test for a role of random drift versus natural selection in skull divergence and to reconstruct selection gradients along species phylogeny. Climatic variables explained high proportions of between-species variation in the most selected axis. However, most evolutionary responses were not in the direction of selection, but aligned with the direction of allometric size, the dimension of highest phenotypic variance in the ancestral population. We conclude that toad species have responded to selection related to climate in their skulls, yet high evolutionary constraints dominated species divergence and may limit species responses to future climate change.


Asunto(s)
Anuros/anatomía & histología , Anuros/clasificación , Evolución Biológica , Cambio Climático , Cráneo/anatomía & histología , Adaptación Biológica , Animales , Flujo Genético , Filogenia , Selección Genética
9.
Mol Phylogenet Evol ; 103: 184-198, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27421565

RESUMEN

A phylogenetic systematic perspective is instrumental in recovering new species and their evolutionary relationships. The advent of new technologies for molecular and morphological data acquisition and analysis, allied to the integration of knowledge from different areas, such as ecology and population genetics, allows for the emergence of more rigorous, accurate and complete scientific hypothesis on species diversity. Mustached bats (genus Pteronotus) are a good model for the application of this integrative approach. They are a widely distributed and a morphologically homogeneous group, but comprising species with remarkable differences in their echolocation strategy and feeding behavior. The latest systematic review suggested six species with 17 subspecies in Pteronotus. Subsequent studies using discrete morphological characters supported the same arrangement. However, recent papers reported high levels of genetic divergence among conspecific taxa followed by bioacoustic and geographic agreement, suggesting an underestimated diversity in the genus. To date, no study merging genetic evidences and morphometric variation along the entire geographic range of this group has been attempted. Based on a comprehensive sampling including representatives of all current taxonomic units, we attempt to delimit species in Pteronotus through the application of multiple methodologies and hierarchically distinct datasets. The molecular approach includes six molecular markers from three genetic transmission systems; morphological investigations used 41 euclidean distances estimated through three-dimensional landmarks collected from 1628 skulls. The phylogenetic analysis reveals a greater diversity than previously reported, with a high correspondence among the genetic lineages and the currently recognized subspecies in the genus. Discriminant analysis of variables describing size and shape of cranial bones support the rising of the genetic groups to the specific status. Based on multiples evidences, we present an updated taxonomic arrangement composed by 16 extant species and a new and more robust phylogenetic hypothesis for the species included in the genus Pteronotus. Studies developed under such integrative taxonomic approach are timely for a deeper and wider comprehension of Neotropical diversity, representing the first step for answering broader questions on evolutionary and ecological aspects of Neotropical life history.


Asunto(s)
Quirópteros/clasificación , Animales , Biodiversidad , Evolución Biológica , Quirópteros/genética , Citocromos b/clasificación , Citocromos b/genética , Citocromos b/metabolismo , ARN Helicasas DEAD-box/clasificación , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Análisis Discriminante , Filogenia , Análisis de Componente Principal , Factor de Transcripción STAT5/clasificación , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
10.
Glob Chang Biol ; 22(9): 3233-52, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26732228

RESUMEN

Predicting how individual taxa will respond to climatic change is challenging, in part because the impacts of environmental conditions can vary markedly, even among closely related species. Studies of chipmunks (Tamias spp.) in Yosemite National Park provide an important opportunity to explore the reasons for this variation in response. While the alpine chipmunk (T. alpinus) has undergone a significant elevational range contraction over the past century, the congeneric and partially sympatric lodgepole chipmunk (T. speciosus) has not experienced an elevational range shift during this period. As a first step toward identifying the factors underlying this difference in response, we examined evidence for dietary changes and changes in cranial morphology in these species over the past century. Stable isotope analyses of fur samples from modern and historical museum specimens of these species collected at the same localities indicated that signatures of dietary change were more pronounced in T. alpinus, although diet breadth did not differ consistently between the study species. Morphometric analyses of crania from these specimens revealed significant changes in cranial shape for T. alpinus, with less pronounced changes in shape for T. speciosus; evidence of selection on skull morphology was detected for T. alpinus, but not for T. speciosus. These results are consistent with growing evidence that T. alpinus is generally more responsive to environmental change than T. speciosus, but emphasize the complex and often geographically variable nature of such responses. Accordingly, future studies that make use of the taxonomically and spatially integrative approach employed here may prove particularly informative regarding relationships between environmental conditions, range changes, and patterns of phenotypic variation.


Asunto(s)
Cambio Climático , Dieta , Sciuridae , Animales , Ambiente , Conducta Alimentaria
11.
Front Zool ; 12: 12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26120349

RESUMEN

INTRODUCTION: The wider availability of non-destructive and high-resolution methods, such as micro-computed tomography (micro-CT), has prompted its use in anatomical and morphometric studies. Yet, because of the actual scanning procedure and the processing of CT data by software that renders 3D surfaces or volumes, systematic errors might be introduced in placing landmarks as well as in estimating linear distances. Here we assess landmark precision and measurement reliability and accuracy of using micro-CT images of toad skulls and the TINA Manual Landmarking Tool software to place 20 landmarks and extract 24 linear distances. Landmark precision and linear distances calculated from 3D images were compared to the same landmarks and distances obtained with a 3D digitizer in the same skulls. We also compared landmarks and linear distances in 3D images of the same individuals scanned with distinct filters, since we detected variation in bone thickness or density among the individuals used. RESULTS: We show that landmark precision is higher for micro-CT than for the 3D digitizer. Distance reliability was very high within-methods, but decreased in 20 % when 3D digitizer and micro-CT data were joined together. Still, we did not find any systematic bias in estimating linear distances with the micro-CT data and the between-methods errors were similar for all distances (around 0.25 mm). Absolute errors correspond to about 6.5 % of the distance's means for micro-CT resolutions and 3D digitizer comparisons, and to 3 % for the filter type analysis. CONCLUSIONS: We conclude that using micro-CT data for morphometric analysis results in acceptable landmark precision and similar estimates of most linear distances compared to 3D digitizer, although some distances are more prone to discrepancies between-methods. Yet, caution in relation to the scale of the measurements needs to be taken, since the proportional between-method error is higher for smaller distances. Scanning with distinct filters does not introduce a high level of error and is recommended when individuals differ in bone density.

12.
Evolution ; 77(3): 763-775, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36626805

RESUMEN

How covariance patterns of phenotypes change during development is fundamental for a broader understanding of evolution. There is compelling evidence that mammalian cranium covariance patterns change during ontogeny. However, it is unclear to what extent variation in covariance patterns during ontogeny can impact the response to selection. To tackle this question, we explored: (a) the extent to which covariance patterns change during postnatal ontogeny; (b) in which ontogenetic stages covariance patterns differ the most; and (c) the extent to which the phenotypic covariance pattern at different ontogenetic stages can be explained by the same processes determining additive genetic covariance. We sampled the postnatal ontogenetic series for both marsupials and placentals. Within each ontogenetic series, we compared covariance matrices (P-matrices) at different ontogenetic stages. Furthermore, we compared these P-matrices to two target matrices [adult P-matrix and an additive genetic covariance matrix (G-matrix)]. Our results show that for all ontogenetic series, covariance patterns from weaning onward are conserved and probably shaped by the same processes determining the G-matrix. We conclude that irrespective of eventual differences in how selection operates during most of the postnatal ontogeny, the net response to such pressures will probably not be affected by ontogenetic differences in the covariance pattern.


Asunto(s)
Evolución Biológica , Marsupiales , Animales , Cráneo/anatomía & histología , Marsupiales/anatomía & histología , Morfogénesis , Biología
13.
Evolution ; 76(2): 207-224, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34888853

RESUMEN

The adoption of a multivariate perspective of selection implies the existence of multivariate adaptive peaks and pervasive correlational selection that promotes co-adaptation between traits. However, to test for the ubiquity of correlational selection in nature, we must first have a sense of how well can we estimate multivariate nonlinear selection (i.e., the γ-matrix) in the face of sampling error. To explore the sampling properties of estimated γ-matrices, we simulated inidividual traits and fitness under a wide range of sample sizes, using different strengths of correlational selection and of stabilizing selection, combined with different number of traits under selection, different amounts of residual variance in fitness, and distinct patterns of selection. We then ran nonlinear regressions with these simulated datasets to simulate γ-matrices after adding random error to individual fitness. To test how well could we detect the imposed pattern of correlational selection at different sample sizes, we measured the similarity between simulated and imposed γ-matrices. We show that detection of the pattern of correlational selection is highly dependent on the total strength of selection on traits and on the amount of residual variance in fitness. Minimum sample size needs to be at least 500 to precisely estimate the pattern of correlational selection. Furthermore, a pattern of selection in which different sets of traits contribute to different functions is the easiest to diagnose, even when using a large number of traits (10 traits), but with sample sizes in the order of 1000 individuals. Consequently, we recommend working with sets of traits from distinct functional complexes and fitness proxies less prone to effects of environmental and demographic stochasticity to test for correlational selection with lower sample sizes.


Asunto(s)
Selección Genética , Simulación por Computador , Humanos , Fenotipo , Sesgo de Selección
15.
J Exp Zool B Mol Dev Evol ; 314(8): 663-83, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20718017

RESUMEN

An organism is built through a series of contingent factors, yet it is determined by historical, physical, and developmental constraints. A constraint should not be understood as an absolute obstacle to evolution, as it may also generate new possibilities for evolutionary change. Modularity is, in this context, an important way of organizing biological information and has been recognized as a central concept in evolutionary biology bridging on developmental, genetics, morphological, biochemical, and physiological studies. In this article, we explore how modularity affects the evolution of a complex system in two mammalian lineages by analyzing correlation, variance/covariance, and residual matrices (without size variation). We use the multivariate response to selection equation to simulate the behavior of Eutheria and Metharia skulls in terms of their evolutionary flexibility and constraints. We relate these results to classical approaches based on morphological integration tests based on functional/developmental hypotheses. Eutherians (Neotropical primates) showed smaller magnitudes of integration compared with Metatheria (didelphids) and also skull modules more clearly delimited. Didelphids showed higher magnitudes of integration and their modularity is strongly influenced by within-groups size variation to a degree that evolutionary responses are basically aligned with size variation. Primates still have a good portion of the total variation based on size; however, their enhanced modularization allows a broader spectrum of responses, more similar to the selection gradients applied (enhanced flexibility). Without size variation, both groups become much more similar in terms of modularity patterns and magnitudes and, consequently, in their evolutionary flexibility.


Asunto(s)
Zarigüeyas/anatomía & histología , Zarigüeyas/clasificación , Primates/anatomía & histología , Primates/clasificación , Cráneo/anatomía & histología , Cráneo/fisiología , Animales , Tamaño Corporal , Clima Tropical
16.
J Hum Evol ; 56(4): 417-30, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19362730

RESUMEN

The study of the genetic variance/covariance matrix (G-matrix) is a recent and fruitful approach in evolutionary biology, providing a window of investigating for the evolution of complex characters. Although G-matrix studies were originally conducted for microevolutionary timescales, they could be extrapolated to macroevolution as long as the G-matrix remains relatively constant, or proportional, along the period of interest. A promising approach to investigating the constancy of G-matrices is to compare their phenotypic counterparts (P-matrices) in a large group of related species; if significant similarity is found among several taxa, it is very likely that the underlying G-matrices are also equivalent. Here we study the similarity of covariance and correlation structure in a broad sample of Old World monkeys and apes (Catarrhini). We made phylogenetically structured comparisons of correlation and covariance matrices derived from 39 skull traits, ranging from between species to the superfamily level. We also compared the overall magnitude of integration between skull traits (r2) for all Catarrhini genera. Our results show that P-matrices were not strictly constant among catarrhines, but the amount of divergence observed among taxa was generally low. There was significant and positive correlation between the amount of divergence in correlation and covariance patterns among the 30 genera and their phylogenetic distances derived from a recently proposed phylogenetic hypothesis. Our data demonstrate that the P-matrices remained relatively similar along the evolutionary history of catarrhines, and comparisons with the G-matrix available for a New World monkey genus (Saguinus) suggests that the same holds for all anthropoids. The magnitude of integration, in contrast, varied considerably among genera, indicating that evolution of the magnitude, rather than the pattern of inter-trait correlations, might have played an important role in the diversification of the catarrhine skull.


Asunto(s)
Evolución Biológica , Catarrinos/anatomía & histología , Fósiles , Cráneo/anatomía & histología , Animales
17.
Evolution ; 73(12): 2518-2528, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31595985

RESUMEN

The magnitude of morphological integration is a major aspect of multivariate evolution, providing a simple measure of the intensity of association between morphological traits. Studies concerned with morphological integration usually translate phenotypes into morphometric representations to quantify how different morphological elements covary. Geometric and classic morphometric representations translate biological form in different ways, raising the question if magnitudes of morphological integration estimates obtained from different morphometric representations are compatible. Here we sought to answer this question using the relative eigenvalue variance of the covariance matrix obtained for both geometric and classical representations of empirical and simulated datasets. We quantified the magnitude of morphological integration for both shape and form and compared results between representations. Furthermore, we compared integration values between shape and form to evaluate the effect of the inclusion or not of size on the quantification of the magnitude of morphological integration. Results show that the choice of morphological representation has significant impact on the integration magnitude estimate, either for shape or form. Despite this, ordination of the integration values within representations is relatively the same, allowing for similar conclusions to be reached using different methods. However, the inclusion of size in the dataset significantly changes the estimates of magnitude of morphological integration, hindering the comparison of this statistic obtained from different spaces. Morphometricians should be aware of these differences and must consider how biological hypothesis translate into predictions about integration in each particular choice of representation.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Carnívoros/anatomía & histología , Carnívoros/genética , Modelos Biológicos , Animales , Simulación por Computador
18.
Evolution ; 73(5): 961-981, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30861104

RESUMEN

We explored the evolution of morphological integration in the most noteworthy example of adaptive radiation in mammals, the New World leaf-nosed bats, using a massive dataset and by combining phylogenetic comparative methods and quantitative genetic approaches. We demonstrated that the phenotypic covariance structure remained conserved on a broader phylogenetic scale but also showed a substantial divergence between interclade comparisons. Most of the phylogenetic structure in the integration space can be explained by splits at the beginning of the diversification of major clades. Our results provide evidence for a multiple peak adaptive landscape in the evolution of cranial covariance structure and morphological differentiation, based upon diet and roosting ecology. In this scenario, the successful radiation of phyllostomid bats was triggered by the diversification of dietary and roosting strategies, and the invasion of these new adaptive zones lead to changes in phenotypic covariance structure and average morphology. Our results suggest that intense natural selection preceded the invasion of these new adaptive zones and played a fundamental role in shaping cranial covariance structure and morphological differentiation in this hyperdiverse clade of mammals. Finally, our study demonstrates the power of combining comparative methods and quantitative genetic approaches when investigating the evolution of complex morphologies.


Asunto(s)
Quirópteros/fisiología , Ecología , Cráneo/anatomía & histología , Alimentación Animal , Animales , Quirópteros/genética , Especiación Genética , Modelos Biológicos , Análisis Multivariante , Fenotipo , Filogenia , Selección Genética , Especificidad de la Especie
19.
Evolution ; 2018 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-29803199

RESUMEN

Morphological integration refers to the fact that different phenotypic traits of organisms are not fully independent from each other, and tend to covary to different degrees. The covariation among traits is thought to reflect properties of the species' genetic architecture and thus can have an impact on evolutionary responses. Furthermore, if morphological integration changes along the history of a group, inferences of past selection regimes might be problematic. Here, we evaluated the stability and evolution of the morphological integration of skull traits in Carnivora by using evolutionary simulations and phylogenetic comparative methods. Our results show that carnivoran species are able to respond to natural selection in a very similar way. Our comparative analyses show that the phylogenetic signal for pattern of integration is lower than that observed for morphology (trait averages), and that integration was stable throughout the evolution of the group. That notwithstanding, Canidae differed from other families by having higher integration, evolvability, flexibility, and allometric coefficients on the facial region. These changes might have allowed canids to rapidly adapt to different food sources, helping to explain not only the phenotypic diversification of the family, but also why humans were able to generate such a great diversity of dog breeds through artificial selection.

20.
Sci Rep ; 8(1): 7867, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29777172

RESUMEN

Establishing the genetic basis that underlies craniofacial variability in natural populations is one of the main topics of evolutionary and developmental studies. One of the genes associated with mammal craniofacial variability is RUNX2, and in the present study we investigated the association between craniofacial length and width and RUNX2 across New World bats (Phyllostomidae) and primates (Catarrhini and Platyrrhini). Our results showed contrasting patterns of association between the glutamate/alanine ratios (Q/A ratio) and palate shape in these highly diverse groups. In phyllostomid bats, we found an association between shorter/broader faces and increase of the Q/A ratio. In New World monkeys (NWM) there was a positive correlation of increasing Q/A ratios to more elongated faces. Our findings reinforced the role of the Q/A ratio as a flexible genetic mechanism that would rapidly change the time of skull ossification throughout development. However, we propose a scenario in which the influence of this genetic adjustment system is indirect. The Q/A ratio would not lead to a specific phenotype, but throughout the history of a lineage, would act along with evolutionary constraints, as well as other genes, as a facilitator for adaptive morphological changes.


Asunto(s)
Quirópteros/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Hueso Paladar/fisiología , Platirrinos/genética , Alanina/análisis , Animales , Teorema de Bayes , Evolución Biológica , Quirópteros/clasificación , Subunidad alfa 1 del Factor de Unión al Sitio Principal/química , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Bases de Datos Genéticas , Ácido Glutámico/análisis , Hueso Paladar/anatomía & histología , Filogenia , Platirrinos/clasificación , Cráneo/anatomía & histología , Cráneo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA