Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Hum Genet ; 108(10): 2006-2016, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34626583

RESUMEN

Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata5l1 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata5l1 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype.


Asunto(s)
Parálisis Cerebral/patología , Epilepsia/patología , Predisposición Genética a la Enfermedad , Variación Genética , Pérdida Auditiva/patología , Discapacidad Intelectual/patología , Espasticidad Muscular/patología , ATPasas Asociadas con Actividades Celulares Diversas/genética , Adolescente , Adulto , Alelos , Animales , Parálisis Cerebral/etiología , Parálisis Cerebral/metabolismo , Preescolar , Epilepsia/etiología , Epilepsia/metabolismo , Femenino , Pérdida Auditiva/etiología , Pérdida Auditiva/metabolismo , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/etiología , Discapacidad Intelectual/metabolismo , Masculino , Espasticidad Muscular/etiología , Espasticidad Muscular/metabolismo , Ratas , Adulto Joven
2.
J Neurochem ; 151(2): 139-165, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31318452

RESUMEN

The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.


Asunto(s)
Encéfalo/metabolismo , Metabolismo Energético/fisiología , Neuroquímica/educación , Estudiantes , Animales , Astrocitos/metabolismo , Congresos como Asunto/tendencias , Humanos , Neuroglía/metabolismo , Neuronas/metabolismo
3.
Hum Mutat ; 39(1): 23-39, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29068161

RESUMEN

The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both. Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome (DSBS). Although the underlying molecular mechanisms leading to disease remain poorly understood, they are thought to stem from reduced or perturbed NTN1 signaling. Here, we review the 26 reported DCC mutations associated with abnormal CNS development in humans, including 14 missense and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics and diagnostic features. We provide an update on the observed genotype-phenotype relationships of congenital mirror movements, isolated ACC and DSBS, and correlate this to our current understanding of the biological function of DCC in the development of the CNS. All mutations and their associated phenotypes were deposited into a locus-specific LOVD (https://databases.lovd.nl/shared/genes/DCC).


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Genes DCC , Estudios de Asociación Genética , Mutación , Fenotipo , Agenesia del Cuerpo Calloso , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Bases de Datos Genéticas , Humanos , Imagen por Resonancia Magnética , Modelos Moleculares , Netrina-1/química , Netrina-1/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos/genética , Síndrome
4.
Am J Hum Genet ; 95(6): 729-35, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25434005

RESUMEN

Advances in understanding the etiology of Parkinson disease have been driven by the identification of causative mutations in families. Genetic analysis of an Australian family with three males displaying clinical features of early-onset parkinsonism and intellectual disability identified a ∼45 kb deletion resulting in the complete loss of RAB39B. We subsequently identified a missense mutation (c.503C>A [p.Thr168Lys]) in RAB39B in an unrelated Wisconsin kindred affected by a similar clinical phenotype. In silico and in vitro studies demonstrated that the mutation destabilized the protein, consistent with loss of function. In vitro small-hairpin-RNA-mediated knockdown of Rab39b resulted in a reduction in the density of α-synuclein immunoreactive puncta in dendritic processes of cultured neurons. In addition, in multiple cell models, we demonstrated that knockdown of Rab39b was associated with reduced steady-state levels of α-synuclein. Post mortem studies demonstrated that loss of RAB39B resulted in pathologically confirmed Parkinson disease. There was extensive dopaminergic neuron loss in the substantia nigra and widespread classic Lewy body pathology. Additional pathological features included cortical Lewy bodies, brain iron accumulation, tau immunoreactivity, and axonal spheroids. Overall, we have shown that loss-of-function mutations in RAB39B cause intellectual disability and pathologically confirmed early-onset Parkinson disease. The loss of RAB39B results in dysregulation of α-synuclein homeostasis and a spectrum of neuropathological features that implicate RAB39B in the pathogenesis of Parkinson disease and potentially other neurodegenerative disorders.


Asunto(s)
Genes Ligados a X , Discapacidad Intelectual/genética , Degeneración Nerviosa/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo , Proteínas de Unión al GTP rab/genética , Sustitución de Aminoácidos , Australia , Secuencia de Bases , Dopamina/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Discapacidad Intelectual/fisiopatología , Cuerpos de Lewy/metabolismo , Masculino , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Degeneración Nerviosa/fisiopatología , Enfermedad de Parkinson/fisiopatología , Linaje , Análisis de Secuencia de ADN , Eliminación de Secuencia , Sustancia Negra/fisiopatología , Proteínas de Unión al GTP rab/metabolismo
5.
Nat Genet ; 55(2): 209-220, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36635388

RESUMEN

Malformations of cortical development (MCD) are neurological conditions involving focal disruptions of cortical architecture and cellular organization that arise during embryogenesis, largely from somatic mosaic mutations, and cause intractable epilepsy. Identifying the genetic causes of MCD has been a challenge, as mutations remain at low allelic fractions in brain tissue resected to treat condition-related epilepsy. Here we report a genetic landscape from 283 brain resections, identifying 69 mutated genes through intensive profiling of somatic mutations, combining whole-exome and targeted-amplicon sequencing with functional validation including in utero electroporation of mice and single-nucleus RNA sequencing. Genotype-phenotype correlation analysis elucidated specific MCD gene sets associated with distinct pathophysiological and clinical phenotypes. The unique single-cell level spatiotemporal expression patterns of mutated genes in control and patient brains indicate critical roles in excitatory neurogenic pools during brain development and in promoting neuronal hyperexcitability after birth.


Asunto(s)
Epilepsia , Malformaciones del Desarrollo Cortical , Humanos , Multiómica , Encéfalo/metabolismo , Epilepsia/genética , Mutación , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/metabolismo
7.
Eur J Hum Genet ; 27(1): 161-166, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30089829

RESUMEN

1. NAME OF DISEASE (SYNONYMS): Pontocerebellar hypoplasia type 9 (PCH9) and spastic paraplegia-63 (SPG63). 2. OMIM# OF THE DISEASE: 615809 and 615686. 3. NAME OF THE ANALYSED GENES OR DNA/CHROMOSOME SEGMENTS: AMPD2 at 1p13.3. 4. OMIM# OF THE GENE(S): 102771.


Asunto(s)
Enfermedades Cerebelosas/genética , Pruebas Genéticas/métodos , Paraplejía/genética , AMP Desaminasa/genética , Enfermedades Cerebelosas/patología , Pruebas Genéticas/normas , Humanos , Mutación , Paraplejía/patología , Sensibilidad y Especificidad
8.
Cell Rep ; 22(5): 1105-1114, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29386099

RESUMEN

Avoidance of environmental dangers depends on nociceptive topognosis, or the ability to localize painful stimuli. This is proposed to rely on somatotopic maps arising from topographically organized point-to-point connections between the body surface and the CNS. To determine the role of topographic organization of spinal ascending projections in nociceptive topognosis, we generated a conditional knockout mouse lacking expression of the netrin1 receptor DCC in the spinal cord. These mice have an increased number of ipsilateral spinothalamic connections and exhibit aberrant activation of the somatosensory cortex in response to unilateral stimulation. Furthermore, spinal cord-specific Dcc knockout animals displayed mislocalized licking responses to formalin injection, indicating impaired topognosis. Similarly, humans with DCC mutations experience bilateral sensation evoked by unilateral somatosensory stimulation. Collectively, our results constitute functional evidence of the importance of topographic organization of spinofugal connections for nociceptive topognosis.


Asunto(s)
Receptor DCC/metabolismo , Nocicepción/fisiología , Animales , Mapeo Encefálico , Humanos , Ratones , Ratones Noqueados , Vías Nerviosas/metabolismo , Corteza Somatosensorial/metabolismo , Médula Espinal/metabolismo
9.
Nat Genet ; 49(4): 511-514, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28250454

RESUMEN

Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Discapacidades del Desarrollo/genética , Mutación/genética , Receptores de Superficie Celular/genética , Proteínas Supresoras de Tumor/genética , Anomalías Múltiples/genética , Encéfalo/patología , Cuerpo Calloso/patología , Receptor DCC , Familia , Femenino , Humanos , Masculino , Malformaciones del Sistema Nervioso/genética , Células-Madre Neurales/patología , Penetrancia , Fenotipo
10.
Neurol Genet ; 2(6): e114, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27790638

RESUMEN

OBJECTIVE: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. METHODS: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. RESULTS: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. CONCLUSIONS: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency.

11.
Neurology ; 84(20): 2029-32, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25878179

RESUMEN

OBJECTIVE: To define causative somatic mutations in resected brain tissue from an infant with intractable epilepsy secondary to hemispheric cortical dysplasia. METHODS: Whole-exome sequencing was conducted on genomic DNA derived from both resected brain tissue and peripheral blood leukocytes. Comparison of the brain vs blood sequencing results was performed using bioinformatic methods designed to detect low-frequency genetic variation between tissue pairs. RESULTS: Histopathology of the resected tissue showed dyslamination and dysmorphic neurons, but no balloon cells, consistent with focal cortical dysplasia type IIa. mTOR activation was observed by immunohistochemistry in the dysplasia. A missense mutation (c.4487T>G; p.W1456G) was detected in the FAT domain of MTOR in DNA from the dysplasia but not in lymphocytes. The mutation is predicted damaging (i.e., leading to mTOR activation) and was observed as a low-level mosaic with 8% of cells being heterozygous for the variant. CONCLUSIONS: We report the novel finding of an MTOR mutation associated with nonsyndromic cortical dysplasia. Somatic-specific mutations in MTOR and related genes should be considered in a broader spectrum of patients with hemispheric malformations and more restricted forms of cortical dysplasia.


Asunto(s)
Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/patología , Mutación Missense , Serina-Treonina Quinasas TOR/genética , Encéfalo/patología , Epilepsia/etiología , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Malformaciones del Desarrollo Cortical/complicaciones , Neuronas/patología , Tomografía de Emisión de Positrones
12.
Neurol Genet ; 1(2): e16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27066553

RESUMEN

OBJECTIVE: To determine the molecular basis of a severe neurologic disorder in a large consanguineous family with complete agenesis of the corpus callosum (ACC), pontocerebellar hypoplasia (PCH), and peripheral axonal neuropathy. METHODS: Assessment included clinical evaluation, neuroimaging, and nerve conduction studies (NCSs). Linkage analysis used genotypes from 7 family members, and the exome of 3 affected siblings was sequenced. Molecular analyses used Sanger sequencing to perform segregation studies and cohort analysis and Western blot of patient-derived cells. RESULTS: Affected family members presented with postnatal microcephaly and profound developmental delay, with early death in 3. Neuroimaging, including a fetal MRI at 30 weeks, showed complete ACC and PCH. Clinical evaluation showed areflexia, and NCSs revealed a severe axonal neuropathy in the 2 individuals available for electrophysiologic study. A novel homozygous stopgain mutation in adenosine monophosphate deaminase 2 (AMPD2) was identified within the linkage region on chromosome 1. Molecular analyses confirmed that the mutation segregated with disease and resulted in the loss of AMPD2. Subsequent screening of a cohort of 42 unrelated individuals with related imaging phenotypes did not reveal additional AMPD2 mutations. CONCLUSIONS: We describe a family with a novel stopgain mutation in AMPD2. We expand the phenotype recently described as PCH type 9 to include progressive postnatal microcephaly, complete ACC, and peripheral axonal neuropathy. Screening of additional individuals with related imaging phenotypes failed to identify mutations in AMPD2, suggesting that AMPD2 mutations are not a common cause of combined callosal and pontocerebellar defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA