RESUMEN
BACKGROUND: The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip. OBJECTIVES: In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens. METHODS: Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens. RESULTS: Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays. CONCLUSIONS: These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications.
Asunto(s)
Proteínas Bacterianas , Bacterias Gramnegativas , Leishmania major , Isomerasa de Peptidilprolil , Proteínas Protozoarias , Proteínas Bacterianas/antagonistas & inhibidores , Bacterias Gramnegativas/efectos de los fármacos , Leishmania major/efectos de los fármacos , Macrófagos/metabolismo , Neisseria meningitidis , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas RecombinantesRESUMEN
The bacteria Burkholderia pseudomallei and Legionella pneumophila cause severe diseases like melioidosis and Legionnaire's disease with high mortality rates despite antibiotic treatment. Due to increasing antibiotic resistances against these and other Gram-negative bacteria, alternative therapeutical strategies are in urgent demand. As a virulence factor, the macrophage infectivity potentiator (Mip) protein constitutes an attractive target. The Mip proteins of B. pseudomallei and L. pneumophila exhibit peptidyl-prolyl cis/trans isomerase (PPIase) activity and belong to the PPIase superfamily. In previous studies, the pipecolic acid moiety proved to be a valuable scaffold for inhibiting this PPIase activity. Thus, a library of pipecolic acid derivatives was established guided by structural information and computational analyses of the binding site and possible binding modes. Stability and toxicity considerations were taken into account in iterative extensions of the library. Synthesis and evaluation of the compounds in PPIase assays resulted in highly active inhibitors. The activities can be interpreted in terms of a common binding mode obtained by docking calculations.
Asunto(s)
Burkholderia pseudomallei/enzimología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Legionella pneumophila/enzimología , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Isomerasa de Peptidilprolil/metabolismo , Relación Estructura-ActividadRESUMEN
There is a requirement for an efficacious vaccine to protect people against infection from Francisella tularensis, the etiological agent of tularemia. The lipopolysaccharide (LPS) of F. tularensis is suboptimally protective against a parenteral lethal challenge in mice. To develop a more efficacious subunit vaccine, we have used a novel biosynthetic technique of protein glycan coupling technology (PGCT) that exploits bacterial N-linked glycosylation to recombinantly conjugate F. tularensis O-antigen glycans to the immunogenic carrier protein Pseudomonas aeruginosa exoprotein A (ExoA). Previously, we demonstrated that an ExoA glycoconjugate with two glycosylation sequons was capable of providing significant protection to mice against a challenge with a low-virulence strain of F. tularensis. Here, we have generated a more heavily glycosylated conjugate vaccine and evaluated its efficacy in a Fischer 344 rat model of tularemia. We demonstrate that this glycoconjugate vaccine protected rats against disease and the lethality of an inhalational challenge with F. tularensis Schu S4. Our data highlights the potential of this biosynthetic approach for the creation of next-generation tularemia subunit vaccines.
Asunto(s)
Vacunas Bacterianas/inmunología , Francisella tularensis/fisiología , Glicoconjugados/inmunología , Hexosiltransferasas/inmunología , Tularemia/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Inhalación , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Pseudomonas aeruginosa/metabolismo , Ratas , Ratas Endogámicas F344 , VacunaciónRESUMEN
AIMS: The intracellular pathogen Burkholderia pseudomallei causes the disease melioidosis, a major source of morbidity and mortality in southeast Asia and northern Australia. The need to develop novel antimicrobials is compounded by the absence of a licensed vaccine and the bacterium's resistance to multiple antibiotics. In a number of clinically relevant Gram-negative pathogens, DsbA is the primary disulfide oxidoreductase responsible for catalyzing the formation of disulfide bonds in secreted and membrane-associated proteins. In this study, a putative B. pseudomallei dsbA gene was evaluated functionally and structurally and its contribution to infection assessed. RESULTS: Biochemical studies confirmed the dsbA gene encodes a protein disulfide oxidoreductase. A dsbA deletion strain of B. pseudomallei was attenuated in both macrophages and a BALB/c mouse model of infection and displayed pleiotropic phenotypes that included defects in both secretion and motility. The 1.9 Å resolution crystal structure of BpsDsbA revealed differences from the classic member of this family Escherichia coli DsbA, in particular within the region surrounding the active site disulfide where EcDsbA engages with its partner protein E. coli DsbB, indicating that the interaction of BpsDsbA with its proposed partner BpsDsbB may be distinct from that of EcDsbA-EcDsbB. INNOVATION: This study has characterized BpsDsbA biochemically and structurally and determined that it is required for virulence of B. pseudomallei. CONCLUSION: These data establish a critical role for BpsDsbA in B. pseudomallei infection, which in combination with our structural characterization of BpsDsbA will facilitate the future development of rationally designed inhibitors against this drug-resistant organism.
Asunto(s)
Proteínas Bacterianas/química , Burkholderia pseudomallei/enzimología , Proteína Disulfuro Reductasa (Glutatión)/química , Animales , Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/patogenicidad , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Femenino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Oxidación-Reducción , Péptido Hidrolasas/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Estructura Secundaria de Proteína , Fosfolipasas de Tipo C/metabolismo , VirulenciaRESUMEN
The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1.