Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Neurosci ; 44(15)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38418220

RESUMEN

The conformational state of DNA fine-tunes the transcriptional rate and abundance of RNA. Here, we report that G-quadruplex DNA (G4-DNA) accumulates in neurons, in an experience-dependent manner, and that this is required for the transient silencing and activation of genes that are critically involved in learning and memory in male C57/BL6 mice. In addition, site-specific resolution of G4-DNA by dCas9-mediated deposition of the helicase DHX36 impairs fear extinction memory. Dynamic DNA structure states therefore represent a key molecular mechanism underlying memory consolidation.One-Sentence Summary: G4-DNA is a molecular switch that enables the temporal regulation of the gene expression underlying the formation of fear extinction memory.


Asunto(s)
G-Cuádruplex , Masculino , Animales , Ratones , Extinción Psicológica , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Miedo , ADN/metabolismo
2.
J Neurosci ; 43(43): 7084-7100, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37669863

RESUMEN

The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.


Asunto(s)
Miedo , ARN Largo no Codificante , Animales , Masculino , Ratones , Extinción Psicológica , Miedo/fisiología , Aprendizaje/fisiología , ARN Largo no Codificante/metabolismo , Sinapsis/metabolismo
3.
J Neurosci ; 39(6): 970-983, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30545945

RESUMEN

We have identified a member of the growth arrest and DNA damage (Gadd45) protein family, Gadd45γ, which is known to be critically involved in DNA repair, as a key player in the regulation of immediate early gene (IEG) expression underlying the consolidation of associative fear memory in adult male C57BL/6 mice. Gadd45γ temporally influences learning-induced IEG expression in the prelimbic prefrontal cortex (PLPFC) through its interaction with DNA double-strand break (DSB)-mediated changes in DNA methylation. Our findings suggest a two-hit model of experience-dependent IEG activity and learning that comprises (1) a first wave of IEG expression governed by DSBs and followed by a rapid increase in DNA methylation, and (2) a second wave of IEG expression associated with the recruitment of Gadd45γ and active DNA demethylation at the same site, which is necessary for memory consolidation.SIGNIFICANCE STATEMENT How does the pattern of immediate early gene transcription in the brain relate to the storage and accession of information, and what controls these patterns? This paper explores how Gadd45γ, a gene that is known to be involved with DNA modification and repair, regulates the temporal coding of IEGs underlying associative learning and memory. We reveal that, during fear learning, Gadd45γ serves to act as a coordinator of IEG expression and subsequent memory consolidation by directing temporally specific changes in active DNA demethylation at the promoter of plasticity-related IEGs.


Asunto(s)
Reparación del ADN/genética , Miedo/fisiología , Genes Inmediatos-Precoces/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Sistema Límbico/fisiología , Consolidación de la Memoria/fisiología , Memoria/fisiología , Corteza Prefrontal/fisiología , Animales , Señales (Psicología) , Roturas del ADN de Doble Cadena , Metilación de ADN , Epigénesis Genética , Masculino , Recuerdo Mental/fisiología , Ratones , Ratones Endogámicos C57BL , Desempeño Psicomotor/fisiología
4.
Neurobiol Learn Mem ; 161: 202-209, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30965112

RESUMEN

The Piwi pathway is a conserved gene regulatory mechanism comprised of Piwi-like proteins and Piwi-interacting RNAs, which modulates gene expression via RNA interference and through interaction with epigenetic mechanisms. The mammalian Piwi pathway has been defined by its role in transposon control during spermatogenesis; however, despite an increasing number of studies demonstrating its expression in the nervous system, relatively little is known about its function in neurons or potential contribution to behavioural regulation. We have discovered that all three Piwi-like genes are expressed in the adult mouse brain, and that viral-mediated knockdown of the Piwi-like genes Piwil1 and Piwil2 in the dorsal hippocampus leads to enhanced contextual fear memory without affecting generalised anxiety. These results implicate the Piwi pathway in behavioural regulation in the adult mammalian brain, likely through modulation of plasticity-related gene expression.


Asunto(s)
Proteínas Argonautas/metabolismo , Conducta Animal/fisiología , Miedo/fisiología , Hipocampo/metabolismo , Memoria/fisiología , ARN Interferente Pequeño/metabolismo , Animales , Ansiedad/genética , Proteínas Argonautas/genética , Técnicas de Cultivo de Célula , Condicionamiento Operante/fisiología , Epigénesis Genética/fisiología , Expresión Génica/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Agitación Psicomotora/genética
5.
Nat Commun ; 14(1): 7616, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993455

RESUMEN

Long noncoding RNAs (lncRNAs) represent a multidimensional class of regulatory molecules that are involved in many aspects of brain function. Emerging evidence indicates that lncRNAs are localized to the synapse; however, a direct role for their activity in this subcellular compartment in memory formation has yet to be demonstrated. Using lncRNA capture-seq, we identified a specific set of lncRNAs that accumulate in the synaptic compartment within the infralimbic prefrontal cortex of adult male C57/Bl6 mice. Among these was a splice variant related to the stress-associated lncRNA, Gas5. RNA immunoprecipitation followed by mass spectrometry and single-molecule imaging revealed that this Gas5 isoform, in association with the RNA binding proteins G3BP2 and CAPRIN1, regulates the activity-dependent trafficking and clustering of RNA granules. In addition, we found that cell-type-specific, activity-dependent, and synapse-specific knockdown of the Gas5 variant led to impaired fear extinction memory. These findings identify a new mechanism of fear extinction that involves the dynamic interaction between local lncRNA activity and RNA condensates in the synaptic compartment.


Asunto(s)
Miedo , ARN Largo no Codificante , Ratones , Masculino , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Extinción Psicológica , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo
6.
Cell Rep ; 38(12): 110546, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35320727

RESUMEN

Here, we used RNA capture-seq to identify a large population of lncRNAs that are expressed in the infralimbic prefrontal cortex of adult male mice in response to fear-related learning. Combining these data with cell-type-specific ATAC-seq on neurons that had been selectively activated by fear extinction learning, we find inducible 434 lncRNAs that are derived from enhancer regions in the vicinity of protein-coding genes. In particular, we discover an experience-induced lncRNA we call ADRAM (activity-dependent lncRNA associated with memory) that acts as both a scaffold and a combinatorial guide to recruit the brain-enriched chaperone protein 14-3-3 to the promoter of the memory-associated immediate-early gene Nr4a2 and is required fear extinction memory. This study expands the lexicon of experience-dependent lncRNA activity in the brain and highlights enhancer-derived RNAs (eRNAs) as key players in the epigenomic regulation of gene expression associated with the formation of fear extinction memory.


Asunto(s)
Miedo , ARN Largo no Codificante , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Masculino , Ratones , Corteza Prefrontal/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
7.
Nat Neurosci ; 23(6): 718-729, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32367065

RESUMEN

DNA forms conformational states beyond the right-handed double helix; however, the functional relevance of these noncanonical structures in the brain remains unknown. Here we show that, in the prefrontal cortex of mice, the formation of one such structure, Z-DNA, is involved in the regulation of extinction memory. Z-DNA is formed during fear learning and reduced during extinction learning, which is mediated, in part, by a direct interaction between Z-DNA and the RNA-editing enzyme Adar1. Adar1 binds to Z-DNA during fear extinction learning, which leads to a reduction in Z-DNA at sites where Adar1 is recruited. Knockdown of Adar1 leads to an inability to modify a previously acquired fear memory and blocks activity-dependent changes in DNA structure and RNA state-effects that are fully rescued by the introduction of full-length Adar1. These findings suggest a new mechanism of learning-induced gene regulation that is dependent on proteins that recognize alternate DNA structure states, which are required for memory flexibility.


Asunto(s)
Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/fisiología , ADN de Forma Z/fisiología , Extinción Psicológica/fisiología , Edición de ARN/fisiología , Animales , ADN de Forma Z/metabolismo , Miedo , Aprendizaje/fisiología , Ratones , Corteza Prefrontal/metabolismo , ARN Interferente Pequeño/farmacología
9.
Psychopharmacology (Berl) ; 236(1): 133-142, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30506235

RESUMEN

An understanding of how memory is acquired and how it can be modified in fear-related anxiety disorders, with the enhancement of failing memories on one side and a reduction or elimination of traumatic memories on the other, is a key unmet challenge in the fields of neuroscience and neuropsychiatry. The latter process depends on an important form of learning called fear extinction, where a previously acquired fear-related memory is decoupled from its ability to control behaviour through repeated non-reinforced exposure to the original fear-inducing cue. Although simple in description, fear extinction relies on a complex pattern of brain region and cell-type specific processes, some of which are unique to this form of learning and, for better or worse, contribute to the inherent instability of fear extinction memory. Here, we explore an emerging layer of biology that may compliment and enrich the synapse-centric perspective of fear extinction. As opposed to the more classically defined role of protein synthesis in the formation of fear extinction memory, a neuroepigenetic view of the experience-dependent gene expression involves an appreciation of dynamic changes in the state of the entire cell: from a transient change in plasticity at the level of the synapse, to potentially more persistent long-term effects within the nucleus. A deeper understanding of neuroepigenetic mechanisms and how they influence the formation and maintenance of fear extinction memory has the potential to enable the development of more effective treatment approaches for fear-related neuropsychiatric conditions.


Asunto(s)
Encéfalo/fisiología , Epigénesis Genética/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Miedo/psicología , Animales , Humanos , Aprendizaje/fisiología , Memoria/fisiología , Trastornos Mentales/genética , Trastornos Mentales/psicología
10.
Psychoneuroendocrinology ; 99: 8-19, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30172072

RESUMEN

While increasing evidence posits poor decision-making as a central feature of mental disorders, very few studies investigated the effects of early-life stress (ELS) on specific components of reward-related choice behaviors. Risk-taking (RT) involves the exposure to some danger, or negative consequences, in order to achieve a goal-directed behavior. Such behaviors are likely to be preceded by risk-assessment (RA), which is a dynamic cognitive process involving the acquisition of information in potentially dangerous situations. Here, we investigated the effects of being raised in impoverished housing conditions during early life (P2-P9) on RT, RA and dopaminergic and corticotrophinergic gene expression of adolescent male and female mice. Phenotypes were assessed by two protocols: the elevated plus-maze (EPM) and the predator-odor risk-taking (PORT). We found decreased RA in mice exposed to impoverished housing in the absence of a reward (EPM), with a more pronounced effect among females. Moreover, when exposed to a predatory olfactory cue, increased RT was observed in these females in a reward-related task (PORT), as well as decreased HPA axis responsivity. This sex-specific behavioral effect was associated with increased Crfr1 mRNA expression in the medial prefrontal cortex (mPFC) and higher levels of the histone mark H3R2me2s, a histone modification known to be involved in transcriptional activation, within the promoter of the Crfr1 gene. These findings revealed that ELS exposure can impair the acquisition of environmental information in dangerous situations and increase RT in reward-related scenarios among females, with an important role regarding epigenetic regulation of the Crfr1 gene.


Asunto(s)
Conducta de Elección/fisiología , Toma de Decisiones/fisiología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Factores de Edad , Animales , Encéfalo , Dopamina/metabolismo , Epigénesis Genética/genética , Femenino , Regulación de la Expresión Génica/genética , Histonas/genética , Vivienda para Animales , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Sistema Hipófiso-Suprarrenal/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Hormona Liberadora de Corticotropina/fisiología , Recompensa , Medición de Riesgo , Asunción de Riesgos , Factores Sexuales , Estrés Psicológico/metabolismo
11.
Nat Neurosci ; 22(4): 534-544, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30778148

RESUMEN

DNA modification is known to regulate experience-dependent gene expression. However, beyond cytosine methylation and its oxidated derivatives, very little is known about the functional importance of chemical modifications on other nucleobases in the brain. Here we report that in adult mice trained in fear extinction, the DNA modification N6-methyl-2'-deoxyadenosine (m6dA) accumulates along promoters and coding sequences in activated prefrontal cortical neurons. The deposition of m6dA is associated with increased genome-wide occupancy of the mammalian m6dA methyltransferase, N6amt1, and this correlates with extinction-induced gene expression. The accumulation of m6dA is associated with transcriptional activation at the brain-derived neurotrophic factor (Bdnf) P4 promoter, which is required for Bdnf exon IV messenger RNA expression and for the extinction of conditioned fear. These results expand the scope of DNA modifications in the adult brain and highlight changes in m6dA as an epigenetic mechanism associated with activity-induced gene expression and the formation of fear extinction memory.


Asunto(s)
Metilación de ADN , Desoxiadenosinas/metabolismo , Extinción Psicológica/fisiología , Miedo , Regulación de la Expresión Génica , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Epigénesis Genética , Masculino , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo
12.
Neuroscience ; 369: 248-260, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29158107

RESUMEN

Epigenetic regulation of activity-induced gene expression involves multiple levels of molecular interaction, including histone and DNA modifications, as well as mechanisms of DNA repair. Here we demonstrate that the genome-wide deposition of inhibitor of growth family member 1 (ING1), which is a central epigenetic regulatory protein, is dynamically regulated in response to activity in primary cortical neurons. ING1 knockdown leads to decreased expression of genes related to synaptic plasticity, including the regulatory subunit of calcineurin, Ppp3r1. In addition, ING1 binding at a site upstream of the transcription start site (TSS) of Ppp3r1 depends on yet another group of neuroepigenetic regulatory proteins, the Piwi-like family, which are also involved in DNA repair. These findings provide new insight into a novel mode of activity-induced gene expression, which involves the interaction between different epigenetic regulatory mechanisms traditionally associated with gene repression and DNA repair.


Asunto(s)
Corteza Cerebral/metabolismo , Epigénesis Genética , Proteína Inhibidora del Crecimiento 1/metabolismo , Neuronas/metabolismo , Animales , Proteínas Argonautas/metabolismo , Proteínas de Unión al Calcio , Células Cultivadas , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteína Inhibidora del Crecimiento 1/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , ARN Mensajero/metabolismo
13.
ACS Chem Neurosci ; 9(7): 1858-1865, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29874042

RESUMEN

Transcriptome-wide expression profiling of neurons has provided important insights into the underlying molecular mechanisms and gene expression patterns that transpire during learning and memory formation. However, there is a paucity of tools for profiling stimulus-induced RNA within specific neuronal cell populations. A bioorthogonal method to chemically label nascent (i.e., newly transcribed) RNA in a cell-type-specific and temporally controlled manner, which is also amenable to bioconjugation via click chemistry, was recently developed and optimized within conventional immortalized cell lines. However, its value within a more fragile and complicated cellular system such as neurons, as well as for transcriptome-wide expression profiling, has yet to be demonstrated. Here, we report the visualization and sequencing of activity-dependent nascent RNA derived from neurons using this labeling method. This work has important implications for improving transcriptome-wide expression profiling and visualization of nascent RNA in neurons, which has the potential to provide valuable insights into the mechanisms underlying neural plasticity, learning, and memory.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neuronas/metabolismo , ARN/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/química , Corteza Cerebral/metabolismo , Biología Computacional , Ratones Endogámicos C57BL , Neuronas/química , Cultivo Primario de Células , ARN/química
14.
Nat Neurosci ; 19(10): 1292-8, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27669990

RESUMEN

In this Perspective, we expand the notion of temporal regulation of RNA in the brain and propose that the qualitative nature of RNA and its metabolism, together with RNA abundance, are essential for the molecular mechanisms underlying experience-dependent plasticity. We discuss emerging concepts in the newly burgeoning field of epitranscriptomics, which are predicted to be heavily involved in cognitive function. These include activity-induced RNA modifications, RNA editing, dynamic changes in the secondary structure of RNA, and RNA localization. Each is described with an emphasis on its role in regulating the function of both protein-coding genes, as well as various noncoding regulatory RNAs, and how each might influence learning and memory.


Asunto(s)
Encéfalo/metabolismo , Cognición , Aprendizaje , ARN no Traducido/metabolismo , ARN/metabolismo , Animales , Humanos , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA