Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Pharm ; 597: 120287, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33524523

RESUMEN

The aim was to produce PEG-coated nanoparticles (NP-PEG), with mucus-permeating properties, for oral drug delivery purposes by using simple procedures and regulatory-approved compounds in order to facilitate a potential clinical development. For this purpose, zein nanoparticles were prepared by desolvation and, then, coated by incubation with PEG 35,000. The resulting nanocarriers displayed a mean size of about 200 nm and a negative zeta potential. The presence of PEG on the surface of nanoparticles was evidenced by electron microscopy and confirmed by FTIR analysis. Likely, the hydrophobic surface of zein nanoparticles (NP) was significantly reduce by their coating with PEG. This increase of the hydrophilicity of PEG-coated nanoparticles was associated with an important increase of their mobility in pig intestinal mucus. In laboratory animals, NP-PEG (fluorescently labelled with Lumogen® Red 305) displayed a different behavior when compared with bare nanoparticles. After oral administration, NP appeared to be trapped in the mucus mesh, whereas NP-PEG were capable of crossing the protective mucus layer and reach the epithelium. Finally, PEG-coated zein nanoparticles, prepared by a simple and reproducible method without employing reactive reagents, may be adequate carriers for promoting the oral bioavailability of biomacromolecules and other biologically active compounds with low permeability properties.


Asunto(s)
Nanopartículas , Zeína , Administración Oral , Animales , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Moco , Tamaño de la Partícula , Porcinos
2.
Artículo en Inglés, Español | MEDLINE | ID: mdl-32201272

RESUMEN

OBJECTIVE: To optimize radiolabeling with 99mTc and 67Ga of albumin nanoparticles coated with 4 differents synthetic polymers and to evaluate their stability in vivo and in vitro, as well as their biodistribution in vivo after intravenous administration. MATERIAL AND METHODS: The nanoparticles were prepared using albumin and NOTA-modified albumin by the desolvation method and coated with 4 different polymers; HPMC, GMN2, GPM2 and GTM2. They were purified, lyophilized and characterized. Radiolabelling with 99mTc was perfomed with 74 MBq of 99mTc sodium pertechnetate, previously reduced with and acid solution of tin chloride at different concentrations (0.003, 0.005, 0.007, 0.01, 0.05 and 0.1mg/ml) and at different times (5, 10, 15, 30 and 60minutes) and temperatures (room temperature, 40°C and 60°C). Radiolabelling with 67Ga was perfomed by incubation of the nanoparticles with 37 MBq of 67Gallium chloride (obtained from commercial gallium-67 citrate) at different times (10 and 30minutes) and temperatures (room temperature, 30°C and 60°C), and posterior purification with microconcentrators. The radiochemical purity was evaluated by TLC. Stability studies of radiolabeled nanoparticles in physiological serum and blood plasma were perfomed. Biodistribution studies of nanoparticles coated with GPM2 polymer were carried out in Wistar rats after intravenous administration of the nanoparticles. Control animals were carried out with 99mTc sodium pertechnetate and 67Ga chloride. To do so, the animals were killed and activity in organs was measured in a gamma counter. RESULTS: 99mTc labeling was carried out optimally with a tin concentration of 0.007mg/ ml for the GPM2 nanoparticles and 0.005mg / ml for the rest of the formulations, with a radiolabelling time of 10minutes at room temperature. In the case of 67Ga the label was optimized at 30° C temperature and 30minutes of incubation. In both cases the radiochemical purity obtained was greater than 97%. The nanoparticles showed high stability in vitro after 48hours of labeling (70% nanoparticles labeled with 99mTc and 90% those labeled with 67Ga). Biodistribution studies of nanoparticles 99mTc -GPM2 and 67Ga -NOTA-GPM2 showed a high accumulation of activity in the liver at 2 and 24hours after intravenous administration. CONCLUSION: The labeling procedure with 99mTc and 67Ga of albumin and albumin modified with NOTA nanoparticles allows obtaining nanoparticles with high labeling yields and adequate in vitro stability, allowing their use for in vivo studies.


Asunto(s)
Radioisótopos de Galio/farmacocinética , Galio/farmacocinética , Marcaje Isotópico/métodos , Nanopartículas/administración & dosificación , Poliaminas/química , Radiofármacos/farmacocinética , Albúmina Sérica Humana/farmacocinética , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Tecnecio/farmacocinética , Tiamina/química , Animales , Cromatografía en Capa Delgada , Estabilidad de Medicamentos , Femenino , Galio/administración & dosificación , Galio/análisis , Radioisótopos de Galio/administración & dosificación , Radioisótopos de Galio/análisis , Compuestos Heterocíclicos con 1 Anillo , Derivados de la Hipromelosa , Inyecciones Intravenosas , Nanopartículas/análisis , Polietilenglicoles , Radiofármacos/administración & dosificación , Radiofármacos/análisis , Ratas , Ratas Wistar , Albúmina Sérica Humana/administración & dosificación , Albúmina Sérica Humana/análisis , Tecnecio/administración & dosificación , Tecnecio/análisis , Temperatura , Compuestos de Estaño , Distribución Tisular
3.
Int J Biol Macromol ; 126: 952-959, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30584929

RESUMEN

Arabinoxylans (AX) microspheres with different insulin/AX mass ratio were prepared by formation of phenoxy radical issued from the ferulic acid by enzymatic oxidation (entrapped in situ of insulin). Phenolic acid content and FT-IR spectrum of unloaded and insulin-loaded AX microspheres revealed that the phenoxy radical issued from the ferulic acid by enzymatic oxidation did not interact covalently with insulin. The microspheres showed a spherical shape, smooth surface and an average diameter of particles of 320 µm. In vitro control release found that AX microspheres minimized the insulin loss in the upper GI tract, retaining high percentage (~75%) of insulin in its matrix. The stability of the secondary structure of insulin was studied by dichroism circular (CD). The CD spectra of insulin released from AX microspheres did not change according to the insulin/AX mass ratio of the microsphere. Significant hypoglycemic effects with improved insulin-relative bioavailability tested on an in vivo murine model revealed the efficacy of these enzymatically cross-linked arabinoxylans microspheres as a new oral insulin carrier.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Sistemas de Liberación de Medicamentos , Insulina/administración & dosificación , Lacasa/metabolismo , Microesferas , Xilanos/química , Administración Oral , Animales , Glucemia/metabolismo , Liberación de Fármacos , Humanos , Masculino , Ratas Wistar , Reología , Espectroscopía Infrarroja por Transformada de Fourier , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA