Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurosci ; 32(20): 6995-7000, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22593067

RESUMEN

Underexpression of the transcriptional coactivator PGC-1α is causally linked to certain neurodegenerative disorders, including Huntington's Disease (HD). HD pathoprogression is also associated with aberrant NMDAR activity, in particular an imbalance between synaptic versus extrasynaptic (NMDAR(EX)) activity. Here we show that PGC-1α controls NMDAR(EX) activity in neurons and that its suppression contributes to mutant Huntingtin (mHtt)-induced increases in NMDAR(EX) activity and vulnerability to excitotoxic insults. We found that knock-down of endogenous PGC-1α increased NMDAR(EX) activity and vulnerability to excitotoxic insults in rat cortical neurons. In contrast, exogenous expression of PGC-1α resulted in a neuroprotective reduction of NMDAR(EX) currents without affecting synaptic NMDAR activity. Since HD models are associated with mHtt-mediated suppression of PGC-1α expression, as well as increased NMDAR(EX) activity, we investigated whether these two events were linked. Expression of mHtt (148Q) resulted in a selective increase in NMDAR(EX) activity, compared with wild-type Htt (18Q), and increased vulnerability to NMDA excitotoxicity. Importantly, we observed that the effects of mHtt and PGC-1α knockdown on NMDAR(EX) activity and vulnerability to excitotoxicity were nonadditive and occluded each other, consistent with a common mechanism. Moreover, exogenous expression of PGC-1α reversed mtHtt-mediated increases in NMDAR(EX) activity and protected neurons against excitotoxic cell death. The link between mHtt, PGC-1α, and NMDAR activity was also confirmed in rat striatal neurons. Thus, targeting levels of PGC-1α expression may help reduce aberrant NMDAR(EX) activity in disorders where PGC-1α is underexpressed.


Asunto(s)
Muerte Celular/fisiología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Potenciales de la Membrana/fisiología , N-Metilaspartato/toxicidad , Proteínas de Unión al ARN/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Transcripción/fisiología , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen/métodos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Nat Neurosci ; 11(4): 476-87, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18344994

RESUMEN

Intrinsic antioxidant defenses are important for neuronal longevity. We found that in rat neurons, synaptic activity, acting via NMDA receptor (NMDAR) signaling, boosted antioxidant defenses by making changes to the thioredoxin-peroxiredoxin (Prx) system. Synaptic activity enhanced thioredoxin activity, facilitated the reduction of overoxidized Prxs and promoted resistance to oxidative stress. Resistance was mediated by coordinated transcriptional changes; synaptic NMDAR activity inactivated a previously unknown Forkhead box O target gene, the thioredoxin inhibitor Txnip. Conversely, NMDAR blockade upregulated Txnip in vivo and in vitro, where it bound thioredoxin and promoted vulnerability to oxidative damage. Synaptic activity also upregulated the Prx reactivating genes Sesn2 (sestrin 2) and Srxn1 (sulfiredoxin), via C/EBPbeta and AP-1, respectively. Mimicking these expression changes was sufficient to strengthen antioxidant defenses. Trans-synaptic stimulation of synaptic NMDARs was crucial for boosting antioxidant defenses; chronic bath activation of all (synaptic and extrasynaptic) NMDARs induced no antioxidative effects. Thus, synaptic NMDAR activity may influence the progression of pathological processes associated with oxidative damage.


Asunto(s)
Antioxidantes/metabolismo , Estrés Oxidativo/fisiología , Peroxirredoxinas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Tiorredoxinas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Regulación de la Expresión Génica/fisiología , Ratones , Neuronas/metabolismo , Proteínas Nucleares , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Peroxidasas , Proteínas/metabolismo , Ratas , Transducción de Señal/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Transcripción Genética/fisiología
3.
J Neurosci ; 30(7): 2623-35, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20164347

RESUMEN

Synaptic activity promotes resistance to diverse apoptotic insults, the mechanism behind which is incompletely understood. We show here that a coordinated downregulation of core components of the intrinsic apoptosis pathway by neuronal activity forms a key part of the underlying mechanism. Activity-dependent protection against apoptotic insults is associated with inhibition of cytochrome c release in most but not all neurons, indicative of anti-apoptotic signaling both upstream and downstream of this step. We find that enhanced firing activity suppresses expression of the proapoptotic BH3-only member gene Puma in a NMDA receptor-dependent, p53-independent manner. Puma expression is sufficient to induce cytochrome c loss and neuronal apoptosis. Puma deficiency protects neurons against apoptosis and also occludes the protective effect of synaptic activity, while blockade of physiological NMDA receptor activity in the developing mouse brain induces neuronal apoptosis that is preceded by upregulation of Puma. However, enhanced activity can also confer resistance to Puma-induced apoptosis, acting downstream of cytochrome c release. This mechanism is mediated by transcriptional suppression of apoptosome components Apaf-1 and procaspase-9, and limiting caspase-9 activity, since overexpression of procaspase-9 accelerates the rate of apoptosis in active neurons back to control levels. Synaptic activity does not exert further significant anti-apoptotic effects downstream of caspase-9 activation, since an inducible form of caspase-9 overrides the protective effect of synaptic activity, despite activity-induced transcriptional suppression of caspase-3. Thus, suppression of apoptotic gene expression may synergize with other activity-dependent events such as enhancement of antioxidant defenses to promote neuronal survival.


Asunto(s)
Apoptosis/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , 4-Aminopiridina/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/metabolismo , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Bicuculina/farmacología , Caspasa 9/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Citocromos c/metabolismo , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Antagonistas del GABA/farmacología , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Bloqueadores de los Canales de Potasio , Transducción de Señal/efectos de los fármacos , Estaurosporina/farmacología , Sinapsis/efectos de los fármacos , Tacrolimus/análogos & derivados , Tacrolimus/farmacología , Factores de Tiempo , Transfección/métodos , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos
4.
J Neurochem ; 118(3): 365-78, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21623792

RESUMEN

Pituitary adenylate cyclase-activating peptide (PACAP) is a neuroprotective peptide which exerts its effects mainly through the cAMP-protein kinase A (PKA) pathway. Here, we show that in cortical neurons, PACAP-induced PKA signaling exerts a major part of its neuroprotective effects indirectly, by triggering action potential (AP) firing. Treatment of cortical neurons with PACAP induces a rapid and sustained PKA-dependent increase in AP firing and associated intracellular Ca(2+) transients, which are essential for the anti-apoptotic actions of PACAP. Transient exposure to PACAP induces long-lasting neuroprotection in the face of apoptotic insults which is reliant on AP firing and the activation of cAMP response element (CRE) binding protein (CREB)-mediated gene expression. Although direct, activity-independent PKA signaling is sufficient to trigger phosphorylation on CREB's activating serine-133 site, this is insufficient for activation of CREB-mediated gene expression. Full activation is dependent on CREB-regulated transcription co-activator 1 (CRTC1), whose PACAP-induced nuclear import is dependent on firing activity-dependent calcineurin signaling. Over-expression of CRTC1 is sufficient to rescue PACAP-induced CRE-mediated gene expression in the face of activity-blockade, while dominant negative CRTC1 interferes with PACAP-induced, CREB-mediated neuroprotection. Thus, the enhancement of AP firing may play a significant role in the neuroprotective actions of PACAP and other adenylate cyclase-coupled ligands.


Asunto(s)
Fármacos Neuroprotectores , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/fisiología , Potenciales de Acción/fisiología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Calcineurina/fisiología , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Medios de Cultivo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Fenómenos Electrofisiológicos , Técnicas de Placa-Clamp , Fosforilación , Ratas , Ratas Sprague-Dawley , Estaurosporina/antagonistas & inhibidores , Estaurosporina/toxicidad , Transfección
5.
J Neurosci ; 28(42): 10696-710, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18923045

RESUMEN

NMDA receptors (NMDARs) mediate ischemic brain damage, for which interactions between the C termini of NR2 subunits and PDZ domain proteins within the NMDAR signaling complex (NSC) are emerging therapeutic targets. However, expression of NMDARs in a non-neuronal context, lacking many NSC components, can still induce cell death. Moreover, it is unclear whether targeting the NSC will impair NMDAR-dependent prosurvival and plasticity signaling. We show that the NMDAR can promote death signaling independently of the NR2 PDZ ligand, when expressed in non-neuronal cells lacking PSD-95 and neuronal nitric oxide synthase (nNOS), key PDZ proteins that mediate neuronal NMDAR excitotoxicity. However, in a non-neuronal context, the NMDAR promotes cell death solely via c-Jun N-terminal protein kinase (JNK), whereas NMDAR-dependent cortical neuronal death is promoted by both JNK and p38. NMDAR-dependent pro-death signaling via p38 relies on neuronal context, although death signaling by JNK, triggered by mitochondrial reactive oxygen species production, does not. NMDAR-dependent p38 activation in neurons is triggered by submembranous Ca(2+), and is disrupted by NOS inhibitors and also a peptide mimicking the NR2B PDZ ligand (TAT-NR2B9c). TAT-NR2B9c reduced excitotoxic neuronal death and p38-mediated ischemic damage, without impairing an NMDAR-dependent plasticity model or prosurvival signaling to CREB or Akt. TAT-NR2B9c did not inhibit JNK activation, and synergized with JNK inhibitors to ameliorate severe excitotoxic neuronal loss in vitro and ischemic cortical damage in vivo. Thus, NMDAR-activated signals comprise pro-death pathways with differing requirements for PDZ protein interactions. These signals are amenable to selective inhibition, while sparing synaptic plasticity and prosurvival signaling.


Asunto(s)
Marcación de Gen/métodos , Dominios PDZ/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología , Animales , Muerte Celular/fisiología , Células Cultivadas , Potenciales Postsinápticos Excitadores/fisiología , Ligandos , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética
6.
Cell Rep ; 25(4): 841-851.e4, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30355491

RESUMEN

The GluN2 subtype (2A versus 2B) determines biophysical properties and signaling of forebrain NMDA receptors (NMDARs). During development, GluN2A becomes incorporated into previously GluN2B-dominated NMDARs. This "switch" is proposed to be driven by distinct features of GluN2 cytoplasmic C-terminal domains (CTDs), including a unique CaMKII interaction site in GluN2B that drives removal from the synapse. However, these models remain untested in the context of endogenous NMDARs. We show that, although mutating the endogenous GluN2B CaMKII site has secondary effects on GluN2B CTD phosphorylation, the developmental changes in NMDAR composition occur normally and measures of plasticity and synaptogenesis are unaffected. Moreover, the switch proceeds normally in mice that have the GluN2A CTD replaced by that of GluN2B and commences without an observable decline in GluN2B levels but is impaired by GluN2A haploinsufficiency. Thus, GluN2A expression levels, and not GluN2 subtype-specific CTD-driven events, are the overriding factor in the developmental switch in NMDAR composition.


Asunto(s)
Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Potenciación a Largo Plazo , Ratones Endogámicos C57BL , Mutación/genética , Neurogénesis , Fosforilación , Subunidades de Proteína/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/metabolismo , Ritmo Teta/fisiología
7.
Nat Commun ; 6: 7066, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25967870

RESUMEN

Forebrain neurons have weak intrinsic antioxidant defences compared with astrocytes, but the molecular basis and purpose of this is poorly understood. We show that early in mouse cortical neuronal development in vitro and in vivo, expression of the master-regulator of antioxidant genes, transcription factor NF-E2-related-factor-2 (Nrf2), is repressed by epigenetic inactivation of its promoter. Consequently, in contrast to astrocytes or young neurons, maturing neurons possess negligible Nrf2-dependent antioxidant defences, and exhibit no transcriptional responses to Nrf2 activators, or to ablation of Nrf2's inhibitor Keap1. Neuronal Nrf2 inactivation seems to be required for proper development: in maturing neurons, ectopic Nrf2 expression inhibits neurite outgrowth and aborization, and electrophysiological maturation, including synaptogenesis. These defects arise because Nrf2 activity buffers neuronal redox status, inhibiting maturation processes dependent on redox-sensitive JNK and Wnt pathways. Thus, developmental epigenetic Nrf2 repression weakens neuronal antioxidant defences but is necessary to create an environment that supports neuronal development.


Asunto(s)
Antioxidantes/metabolismo , Corteza Cerebral/citología , Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Corteza Cerebral/embriología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Fenómenos Electrofisiológicos , Proteína 1 Asociada A ECH Tipo Kelch , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética
8.
Brain Res ; 1010(1-2): 134-43, 2004 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-15126126

RESUMEN

Several studies have demonstrated that C57 and DBA mice exhibit behavioural differences in diverse learning tasks as well as variations in the expression of long-term potentiation (LTP) in the hippocampus. In the present investigation, we tested the possibility that these differences between the two strains might be attributable to differential regulation of hippocampal alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors by calcium-dependent mechanisms. Using in vitro receptor autoradiography, we found that calcium treatment of C57 mice sections resulted in a marked increase of 3H-AMPA binding in areas CA3 and CA1 of the hippocampus and in the dentate gyrus. However, we discovered that the ability of calcium to upregulate 3H-AMPA binding in the DBA strain was much lower than in corresponding regions from the C57 strain. Western blot and immunohistochemical experiments indicated that truncation of AMPA receptor subunits by calcium-dependent mechanisms was possibly not responsible for the binding differences, as no significant variations in glutamate receptor subunit 1 (GluR1) and GluR2/3 immunoreactivity were observed between the two strains after calcium treatment. Interestingly, we found that strain-related variations in the regulation of 3H-AMPA binding by calcium were totally eliminated when brain sections were preincubated with preferential inhibitors of lipoxygenase (LO) pathways of arachidonic acid (AA) metabolism. Taken together, these results suggest that calcium-induced regulation of AMPA receptors varies between the two strains and that this variation might be linked to the production of specific AA metabolites.


Asunto(s)
Ácido Araquidónico/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Hipocampo/metabolismo , Lipooxigenasa/metabolismo , Receptores AMPA/metabolismo , Animales , Unión Competitiva/efectos de los fármacos , Unión Competitiva/fisiología , Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ensayo de Unión Radioligante , Receptores AMPA/efectos de los fármacos , Especificidad de la Especie , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
9.
Nat Commun ; 4: 2034, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23774321

RESUMEN

The recent identification of the mitochondrial Ca(2+) uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca(2+) uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca(2+) levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca(2+), resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca(2+) overload when cytoplasmic Ca(2+) levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca(2+) and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca(2+) uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Núcleo Celular/metabolismo , Fármacos Neuroprotectores/farmacología , Neurotoxinas/toxicidad , Proteínas Represoras/metabolismo , Transcripción Genética/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Transporte Biológico/efectos de los fármacos , Calcio/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Muerte Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/enzimología , Técnicas de Silenciamiento del Gen , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
10.
Neuron ; 74(3): 543-56, 2012 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-22578505

RESUMEN

It is currently unclear whether the GluN2 subtype influences NMDA receptor (NMDAR) excitotoxicity. We report that the toxicity of NMDAR-mediated Ca(2+) influx is differentially controlled by the cytoplasmic C-terminal domains of GluN2B (CTD(2B)) and GluN2A (CTD(2A)). Studying the effects of acute expression of GluN2A/2B-based chimeric subunits with reciprocal exchanges of their CTDs revealed that CTD(2B) enhances NMDAR toxicity, compared to CTD(2A). Furthermore, the vulnerability of forebrain neurons in vitro and in vivo to NMDAR-dependent Ca(2+) influx is lowered by replacing the CTD of GluN2B with that of GluN2A by targeted exon exchange in a mouse knockin model. Mechanistically, CTD(2B) exhibits stronger physical/functional coupling to the PSD-95-nNOS pathway, which suppresses protective CREB activation. Dependence of NMDAR excitotoxicity on the GluN2 CTD subtype can be overcome by inducing high levels of NMDAR activity. Thus, the identity (2A versus 2B) of the GluN2 CTD controls the toxicity dose-response to episodes of NMDAR activity.


Asunto(s)
N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neurotoxinas/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Embrión de Mamíferos , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Guanilato-Quinasas/metabolismo , Hipocampo/citología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Ratas , Receptores de N-Metil-D-Aspartato/genética , Transfección
11.
Channels (Austin) ; 3(1): 12-5, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19221512

RESUMEN

NMDA receptors (NMDARs) mediate ischemic brain damage, in part through interactions of the PDZ ligand of NR2 subunits with the PDZ domain proteins PSD-95 and neuronal nitric oxide synthase located within the NMDAR signaling complex. We have recently shown that this PDZ ligand-dependent pathway promotes neuronal death via p38 activation. A peptide mimetic of the NR2B PDZ ligand (TAT-NR2B9c) reduces p38-mediated death in vitro and p38-dependent ischemic damage in vivo. In the absence of the PDZ ligand-p38 pathway, such as in TAT-NR2B9c-treated neurons, or in NMDAR-expressing non-neuronal cells, NMDAR-dependent excitotoxicity is mediated largely by JNK and requires greater Ca2+ influx. A major reason for blocking pro-death signaling events downstream of the NMDAR as an anti-excitotoxic strategy is that it may spare physiological synaptic function and signaling. We find that neuroprotective doses of TAT-NR2B9c do not alter the frequency of spontaneous synaptic events within networks of cultured cortical neurons nor is mini-EPSC frequency altered. Furthermore, TAT-NR2B9c does not inhibit the capacity of synaptic NMDAR activity to promote neuroprotective changes in gene expression, including the upregulation of PACAP via CREB, and suppression of the pro-oxidative FOXO target gene Txnip. Thus, while the NR2 PDZ ligand does not account for all the excitotoxic effects of excessive NMDAR activity, these findings underline the value of the specific targeting of death pathways downstream of the NMDAR.


Asunto(s)
Corticotrofos/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Péptidos/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Animales , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Corticotrofos/metabolismo , Corticotrofos/patología , Activación Enzimática , Potenciales Postsinápticos Excitadores , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ligandos , Ratones , Potenciales Postsinápticos Miniatura , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Neuronas/patología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Dominios PDZ , Ratas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Eur J Neurosci ; 23(2): 505-13, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16420457

RESUMEN

A considerable body of evidence indicates that phospholipase A(2) (PLA(2)) enzymes participate in long-term potentiation (LTP) of excitatory synaptic transmission. In the present study, we have undertaken experiments to identify which calcium-independent isoform of PLA(2) is involved in synaptic plasticity and to determine whether calcium-independent PLA(2) (iPLA(2)) contributes to post-synaptic processes of LTP. Using field recordings from rat CA1 hippocampal slices, we found that theta-burst stimulation (TBS)-induced LTP of field excitatory post-synaptic potentials (fEPSPs) was abolished by the iPLA(2) inhibitor bromoenol lactone (BEL) but not by the Ca(2+)-dependent PLA(2) inhibitor arachidonyl trifluoromethyl ketone (AACOCF(3)). The ionic currents generated during TBS were not affected during iPLA(2) inhibition as BEL by itself had no effect on the magnitude of facilitation during burst responses. In addition, (R)-BEL, an enantioselective inhibitor of iPLA(2)gamma, precluded TBS-induced LTP, an action that was not replicated by the iPLA(2)beta inhibitors (S)-BEL and methyl arachidonyl fluorophosphonate. (R)-BEL was, however, ineffective on pre-established LTP. Finally, BEL also prevented the potentiation of fEPSPs elicited by brief exposure to 50 microM N-methyl-d-aspartate, as well as the associated up-regulation of alpha-amino-3-hydroxy-5-methylisoxazole-propionate (AMPA) receptor GluR1 subunit levels and the increase of (3)H-AMPA binding in crude synaptic fractions. Collectively, these results unravel a new role for iPLA(2)gamma in LTP, which appears to favor the insertion of AMPA receptors at post-synaptic membranes.


Asunto(s)
Calcio/metabolismo , Potenciación a Largo Plazo/fisiología , Fosfolipasas A/fisiología , Receptores AMPA/fisiología , Transmisión Sináptica/fisiología , Animales , Ácidos Araquidónicos/farmacología , Western Blotting/métodos , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Hipocampo/fisiología , Inmunoprecipitación/métodos , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de la radiación , Masculino , N-Metilaspartato/farmacocinética , Naftalenos/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Organofosfonatos/farmacología , Técnicas de Placa-Clamp/métodos , Inhibidores de Fosfodiesterasa/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Isoformas de Proteínas/fisiología , Pironas/farmacología , Ratas , Receptores AMPA/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/efectos de la radiación , Factores de Tiempo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacocinética
13.
Hippocampus ; 15(3): 370-80, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15630695

RESUMEN

The present investigation provides the first indication that constitutive, calcium-independent phospholipase A2 activity (iPLA2) modulates phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of glutamate receptors. Preincubation of frozen-thawed brain sections with two iPLA2 inhibitors, bromoenol lactone (BEL) or palmitoyl trifluoromethyl ketone (PACO), produced a dose-dependent enhancement in phosphorylation at both Ser831 and Ser845 sites on the GluR1 subunit of AMPA receptors. This effect was not associated with changes in phosphorylation at the Ser sites of either the GluR2/3 subunits of AMPA receptors or the NR1 subunits of N-methyl-D-aspartate (NMDA) receptors, nor was it reproduced by inhibition of the calcium-dependent form of PLA2 activity. These results suggest that the effects of these inhibitors are selective to GluR1 subunits and that they are dependent on iPLA2 activity. The ability of iPLA2 inhibitors to increase GluR1 phosphorylation was mimicked by the 5-lipoxygenase (5-LO) inhibitor MK-886, but not by blockers of 12-lipoxygenase (12-LO) or cyclooxygenase. Additional experiments indicated that calcium-mediated truncation of GluR1 subunits was reduced by iPLA2 inhibitors, an effect that was not correlated with overall changes in the distribution of AMPA receptors between intracellular and membrane compartments prepared from whole brain sections. However, quantitative autoradiographic analysis indicated enhanced 3H-AMPA binding to the CA1 stratum radiatum of the hippocampus in BEL-treated sections. Saturation kinetics experiments demonstrated that this binding augmentation was due to an increase in the maximal number of AMPA binding sites. Altogether, our results point to the conclusion that basal iPLA2 activity, through the generation of 5-LO metabolites, regulates AMPA receptor phosphorylation of GluR1 subunits, an effect that might selectively influence the number of membrane receptors in area CA1 of the hippocampus.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Hipocampo/enzimología , Neuronas/enzimología , Fosfolipasas A/metabolismo , Receptores AMPA/metabolismo , Animales , Ácido Araquidónico/metabolismo , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Unión Competitiva/efectos de los fármacos , Unión Competitiva/fisiología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Relación Dosis-Respuesta a Droga , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Inhibidores Enzimáticos/farmacología , Fosfolipasas A2 Grupo VI , Hipocampo/anatomía & histología , Inhibidores de la Lipooxigenasa , Masculino , Fosfolipasas A/antagonistas & inhibidores , Fosfolipasas A2 , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores AMPA/efectos de los fármacos , Serina/metabolismo , Membranas Sinápticas/enzimología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA