Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(4): 1131-1140.e11, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343901

RESUMEN

Targeted manipulation of activity in specific populations of neurons is important for investigating the neural circuit basis of behavior. Optogenetic approaches using light-sensitive microbial rhodopsins have permitted manipulations to reach a level of temporal precision that is enabling functional circuit dissection. As demand for more precise perturbations to serve specific experimental goals increases, a palette of opsins with diverse selectivity, kinetics, and spectral properties will be needed. Here, we introduce a novel approach of "topological engineering"-inversion of opsins in the plasma membrane-and demonstrate that it can produce variants with unique functional properties of interest for circuit neuroscience. In one striking example, inversion of a Channelrhodopsin variant converted it from a potent activator into a fast-acting inhibitor that operates as a cation pump. Our findings argue that membrane topology provides a useful orthogonal dimension of protein engineering that immediately permits as much as a doubling of the available toolkit.


Asunto(s)
Channelrhodopsins/química , Optogenética/métodos , Animales , Caenorhabditis elegans , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Masculino , Ratones , Ingeniería de Proteínas/métodos , Ratas , Ratas Long-Evans
2.
Cell ; 162(6): 1418-30, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26359992

RESUMEN

Progressive depletion of midbrain dopamine neurons (PDD) is associated with deficits in the initiation, speed, and fluidity of voluntary movement. Models of basal ganglia function focus on initiation deficits; however, it is unclear how they account for deficits in the speed or amplitude of movement (vigor). Using an effort-based operant conditioning task for head-fixed mice, we discovered distinct functional classes of neurons in the dorsal striatum that represent movement vigor. Mice with PDD exhibited a progressive reduction in vigor, along with a selective impairment of its neural representation in striatum. Restoration of dopaminergic tone with a synthetic precursor ameliorated deficits in movement vigor and its neural representation, while suppression of striatal activity during movement was sufficient to reduce vigor. Thus, dopaminergic input to the dorsal striatum is indispensable for the emergence of striatal activity that mediates adaptive changes in movement vigor. These results suggest refined intervention strategies for Parkinson's disease.


Asunto(s)
Dopamina/metabolismo , Mesencéfalo/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Animales , Ganglios Basales/metabolismo , Modelos Animales de Enfermedad , Hipocinesia/metabolismo , Hipocinesia/fisiopatología , Ratones , Músculo Esquelético/fisiología
3.
Nature ; 621(7980): 788-795, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37730989

RESUMEN

Oxytocin is a neuropeptide that is important for maternal physiology and childcare, including parturition and milk ejection during nursing1-6. Suckling triggers the release of oxytocin, but other sensory cues-specifically, infant cries-can increase the levels of oxytocin in new human mothers7, which indicates that cries can activate hypothalamic oxytocin neurons. Here we describe a neural circuit that routes auditory information about infant vocalizations to mouse oxytocin neurons. We performed in vivo electrophysiological recordings and photometry from identified oxytocin neurons in awake maternal mice that were presented with pup calls. We found that oxytocin neurons responded to pup vocalizations, but not to pure tones, through input from the posterior intralaminar thalamus, and that repetitive thalamic stimulation induced lasting disinhibition of oxytocin neurons. This circuit gates central oxytocin release and maternal behaviour in response to calls, providing a mechanism for the integration of sensory cues from the offspring in maternal endocrine networks to ensure modulation of brain state for efficient parenting.


Asunto(s)
Conducta Materna , Vías Nerviosas , Neuronas , Oxitocina , Vocalización Animal , Animales , Femenino , Ratones , Señales (Psicología) , Hipotálamo/citología , Hipotálamo/fisiología , Conducta Materna/fisiología , Neuronas/metabolismo , Oxitocina/metabolismo , Fotometría , Núcleos Talámicos/fisiología , Vocalización Animal/fisiología , Vigilia
4.
Nature ; 587(7834): E2, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33154579

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nature ; 587(7834): 426-431, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33029014

RESUMEN

Infant cries evoke powerful responses in parents1-4. Whether parental animals are intrinsically sensitive to neonatal vocalizations, or instead learn about vocal cues for parenting responses is unclear. In mice, pup-naive virgin females do not recognize the meaning of pup distress calls, but retrieve isolated pups to the nest after having been co-housed with a mother and litter5-9. Distress calls are variable, and require co-caring virgin mice to generalize across calls for reliable retrieval10,11. Here we show that the onset of maternal behaviour in mice results from interactions between intrinsic mechanisms and experience-dependent plasticity in the auditory cortex. In maternal females, calls with inter-syllable intervals (ISIs) from 75 to 375 milliseconds elicited pup retrieval, and cortical responses were generalized across these ISIs. By contrast, naive virgins were neuronally and behaviourally sensitized to the most common ('prototypical') ISIs. Inhibitory and excitatory neural responses were initially mismatched in the cortex of naive mice, with untuned inhibition and overly narrow excitation. During co-housing experiments, excitatory responses broadened to represent a wider range of ISIs, whereas inhibitory tuning sharpened to form a perceptual boundary. We presented synthetic calls during co-housing and observed that neurobehavioural responses adjusted to match these statistics, a process that required cortical activity and the hypothalamic oxytocin system. Neuroplastic mechanisms therefore build on an intrinsic sensitivity in the mouse auditory cortex, and enable rapid plasticity for reliable parenting behaviour.


Asunto(s)
Corteza Auditiva/fisiología , Conducta Materna/fisiología , Plasticidad Neuronal/fisiología , Estimulación Acústica , Animales , Corteza Auditiva/citología , Potenciales Postsinápticos Excitadores , Femenino , Vivienda para Animales , Conducta Materna/psicología , Ratones , Inhibición Neural/fisiología , Oxitocina/metabolismo , Sinapsis/metabolismo , Factores de Tiempo , Vocalización Animal
6.
Proc Natl Acad Sci U S A ; 120(38): e2218150120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695914

RESUMEN

The endothelium is a major target of the proinflammatory cytokine, tumor necrosis factor alpha (TNFα). Exposure of endothelial cells (EC) to proinflammatory stimuli leads to an increase in mitochondrial metabolism; however, the function and regulation of elevated mitochondrial metabolism in EC in response to proinflammatory cytokines remain unclear. Studies using high-resolution metabolomics and 13C-glucose and 13C-glutamine labeling flux techniques showed that pyruvate dehydrogenase activity (PDH) and oxidative tricarboxylic acid cycle (TCA) flux are elevated in human umbilical vein ECs in response to overnight (16 h) treatment with TNFα (10 ng/mL). Mechanistic studies indicated that TNFα mediated these metabolic changes via mitochondrial-specific protein degradation of pyruvate dehydrogenase kinase 4 (PDK4, inhibitor of PDH) by the Lon protease via an NF-κB-dependent mechanism. Using RNA sequencing following siRNA-mediated knockdown of the catalytically active subunit of PDH, PDHE1α (PDHA1 gene), we show that PDH flux controls the transcription of approximately one-third of the genes that are up-regulated by TNFα stimulation. Notably, TNFα-induced PDH flux regulates a unique signature of proinflammatory mediators (cytokines and chemokines) but not inducible adhesion molecules. Metabolomics and ChIP sequencing for acetylated modification on lysine 27 of histone 3 (H3K27ac) showed that TNFα-induced PDH flux promotes histone acetylation of specific gene loci via citrate accumulation and ATP-citrate lyase-mediated generation of acetyl CoA. Together, these results uncover a mechanism by which TNFα signaling increases oxidative TCA flux of glucose to support TNFα-induced gene transcription through extramitochondrial acetyl CoA generation and histone acetylation.


Asunto(s)
Proteasa La , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Acetilcoenzima A , Células Endoteliales , Histonas , Citocinas
7.
Stroke ; 55(9): 2340-2352, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39129597

RESUMEN

BACKGROUND: TGF (transforming growth factor)-ß pathway is central to blood-brain barrier development as it regulates cross talk between pericytes and endothelial cells. Murine embryos lacking TGFß receptor Alk5 (activin receptor-like kinase 5) in brain pericytes (mutants) display endothelial cell hyperproliferation, abnormal vessel morphology, and gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH), leading to perinatal lethality. Mechanisms underlying how ALK5 signaling in pericytes noncell autonomously regulates endothelial cell behavior remain elusive. METHODS: Transcriptomic analysis of human brain pericytes with ALK5 silencing identified differential gene expression. Brain vascular cells isolated from mutant embryonic mice with GMH-IVH and preterm human IVH brain samples were utilized for target validation. Finally, pharmacological and genetic inhibition was used to study the therapeutic effects on GMH-IVH pathology. RESULTS: Herein, we establish that the TGFß/ALK5 pathway robustly represses ANGPT2 (angiopoietin-2) in pericytes via epigenetic remodeling. TGFß-driven SMAD (suppressor of mothers against decapentaplegic) 3/4 associates with TGIF1 (TGFß-induced factor homeobox 1) and HDAC (histone deacetylase) 5 to form a corepressor complex at the Angpt2 promoter, resulting in promoter deacetylation and gene repression. Moreover, murine and human germinal matrix vessels display increased ANGPT2 expression during GMH-IVH. Isolation of vascular cells from murine germinal matrix identifies pericytes as a cellular source of excessive ANGPT2. In addition, mutant endothelial cells exhibit higher phosphorylated TIE2 (tyrosine protein kinase receptor). Pharmacological or genetic inhibition of ANGPT2 in mutants improves germinal matrix vessel morphology and attenuates GMH pathogenesis. Importantly, genetic ablation of Angpt2 in mutant pericytes prevents perinatal lethality, prolonging survival. CONCLUSIONS: This study demonstrates that TGFß-mediated ANGPT2 repression in pericytes is critical for maintaining blood-brain barrier integrity and identifies pericyte-derived ANGPT2 as an important pathological target for GMH-IVH.


Asunto(s)
Angiopoyetina 2 , Pericitos , Factor de Crecimiento Transformador beta , Pericitos/metabolismo , Pericitos/patología , Animales , Ratones , Humanos , Angiopoyetina 2/metabolismo , Angiopoyetina 2/genética , Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patología , Hemorragia Cerebral/genética , Transducción de Señal/fisiología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Células Endoteliales/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
8.
Stem Cells ; 41(10): 907-915, 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37386941

RESUMEN

The role of serum response factor (Srf), a central mediator of actin dynamics and mechanical signaling, in cell identity regulation is debated to be either a stabilizer or a destabilizer. We investigated the role of Srf in cell fate stability using mouse pluripotent stem cells. Despite the fact that serum-containing cultures yield heterogeneous gene expression, deletion of Srf in mouse pluripotent stem cells leads to further exacerbated cell state heterogeneity. The exaggerated heterogeneity is detectible not only as increased lineage priming but also as the developmentally earlier 2C-like cell state. Thus, pluripotent cells explore more variety of cellular states in both directions of development surrounding naïve pluripotency, a behavior that is constrained by Srf. These results support that Srf functions as a cell state stabilizer, providing rationale for its functional modulation in cell fate intervention and engineering.


Asunto(s)
Células Madre Pluripotentes , Factor de Respuesta Sérica , Ratones , Animales , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular/genética , Actinas/metabolismo , Expresión Génica
9.
Circ Res ; 131(4): 290-307, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35862006

RESUMEN

BACKGROUND: Unfolded protein response (UPR) is a multifaceted signaling cascade that alleviates protein misfolding. Although well studied in nucleated cells, UPR in absence of transcriptional regulation has not been described. Intricately associated with cardiovascular diseases, platelets, despite being anucleate, respond rapidly to stressors in blood. We investigate the UPR in anucleate platelets and explore its role, if any, on platelet physiology and function. METHODS: Human and mouse platelets were studied using a combination of ex vivo and in vivo experiments. Platelet lineage-specific knockout mice were generated independently for each of the 3 UPR pathways, PERK (protein kinase RNA [PKR]-like endoplasmic reticulum kinase), XBP1 (X-binding protein), and ATF6 (activating transcription factor 6). Diabetes patients were prospectively recruited, and platelets were evaluated for activation of UPR under chronic pathophysiological disease conditions. RESULTS: Tunicamycin induced the IRE1α (inositol-requiring enzyme-1alpha)-XBP1 pathway in human and mouse platelets, while oxidative stress predominantly activated the PERK pathway. PERK deletion significantly increased platelet aggregation and apoptosis and phosphorylation of PLCγ2, PLCß3, and p38 MAPK. Deficiency of XBP1 increased platelet aggregation, with higher PLCß3 and PKCδ activation. ATF6 deletion mediated a relatively modest effect on platelet phenotype with increased PKA (protein kinase A). Platelets from diabetes patients exhibited a positive correlation between disease severity, platelet activation, and protein aggregation, with only IRE1α-XBP1 activation. Moreover, IRE1α inhibition increased platelet aggregation, while clinically approved chemical chaperone, sodium 4-phenylbutyrate reduced the platelet hyperactivation. CONCLUSIONS: We show for the first time, that UPR activation occurs in platelets and can be independent of genomic regulation, with selective induction being specific to the source and severity of stress. Each UPR pathway plays a key role and can differentially modulate the platelet activation pathways and phenotype. Targeting the specific arms of UPR may provide a new antiplatelet strategy to mitigate thrombotic risk in diabetes and other cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Endorribonucleasas , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Humanos , Ratones , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo , eIF-2 Quinasa
10.
Circulation ; 145(23): 1720-1737, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35502657

RESUMEN

BACKGROUND: Vascular smooth muscle cell (VSMC) phenotypic switching contributes to cardiovascular diseases. Epigenetic regulation is emerging as a key regulatory mechanism, with the methylcytosine dioxygenase TET2 acting as a master regulator of smooth muscle cell phenotype. The histone acetyl-transferases p300 and CREB-binding protein (CBP) are highly homologous and often considered to be interchangeable, and their roles in smooth muscle cell phenotypic regulation are not known. METHODS: We assessed the roles of p300 and CBP in human VSMC with knockdown, in inducible smooth muscle-specific knockout mice (inducible knockout [iKO]; p300iKO or CBPiKO), and in samples of human intimal hyperplasia. RESULTS: P300, CBP, and histone acetylation were differently regulated in VSMCs undergoing phenotypic switching and in vessel remodeling after vascular injury. Medial p300 expression and activity were repressed by injury, but CBP and histone acetylation were induced in neointima. Knockdown experiments revealed opposing effects of p300 and CBP in the VSMC phenotype: p300 promoted contractile protein expression and inhibited migration, but CBP inhibited contractile genes and enhanced migration. p300iKO mice exhibited severe intimal hyperplasia after arterial injury compared with controls, whereas CBPiKO mice were entirely protected. In normal aorta, p300iKO reduced, but CBPiKO enhanced, contractile protein expression and contractility compared with controls. Mechanistically, we found that these histone acetyl-transferases oppositely regulate histone acetylation, DNA hydroxymethylation, and PolII (RNA polymerase II) binding to promoters of differentiation-specific contractile genes. Our data indicate that p300 and TET2 function together, because p300 was required for TET2-dependent hydroxymethylation of contractile promoters, and TET2 was required for p300-dependent acetylation of these loci. TET2 coimmunoprecipitated with p300, and this interaction was enhanced by rapamycin but repressed by platelet-derived growth factor (PDGF) treatment, with p300 promoting TET2 protein stability. CBP did not associate with TET2, but instead facilitated recruitment of histone deacetylases (HDAC2, HDAC5) to contractile protein promoters. Furthermore, CBP inhibited TET2 mRNA levels. Immunostaining of cardiac allograft vasculopathy samples revealed that p300 expression is repressed but CBP is induced in human intimal hyperplasia. CONCLUSIONS: This work reveals that p300 and CBP serve nonredundant and opposing functions in VSMC phenotypic switching and coordinately regulate chromatin modifications through distinct functional interactions with TET2 or HDACs. Targeting specific histone acetyl-transferases may hold therapeutic promise for cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Músculo Liso Vascular , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Enfermedades Cardiovasculares/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Contráctiles/metabolismo , Epigénesis Genética , Histonas/metabolismo , Humanos , Hiperplasia/metabolismo , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo
11.
Anal Chem ; 95(28): 10695-10702, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37389455

RESUMEN

Selected examples of Native American woven woodsplint basketry created between 1870 and 1983 are studied to recover traditional knowledge about their manufacture by identifying dyes or colorants. An ambient mass spectrometry system is designed to sample from intact objects with minimal invasiveness, neither cutting solids from the whole, exposing objects to liquid, nor leaving a mark on a surface. Baskets up to 60 cm wide in one dimension are placed on height-adjusted mounts. A timed jet of inert nitrogen from a finely positioned probe thermally desorbs neutral material from a mounted item, and a heated transport tube carries the analyte 2 m away at 4.9 L/min. Gas phase analyte is mixed with anisole dopant from an in-line permeation tube and photoionized in a reaction tee immediately before entering the mass spectrometer, identifying dye molecules in real time. Extensive optimization and exposure tests with flat and near-flat splints of dyed wood ensure that the analysis produces no discoloration on the curved and contoured basket splints.

12.
Am J Physiol Heart Circ Physiol ; 325(1): H77-H88, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37145957

RESUMEN

Arteriovenous fistulae (AVF) fail to mature more frequently in female patients compared with male patients, leading to inferior outcomes and decreased utilization. Since our mouse AVF model recapitulates sex differences in human AVF maturation, we hypothesized that sex hormones mediate these differences during AVF maturation. C57BL/6 mice (9-11 wk) were treated with aortocaval AVF surgery and/or gonadectomy. AVF hemodynamics were measured via ultrasound (days 0-21). Blood was collected for FACS and tissue for immunofluorescence and ELISA (days 3 and 7); wall thickness was assessed by histology (day 21). Inferior vena cava shear stress was higher in male mice (P = 0.0028) after gonadectomy, and they had increased wall thickness (22.0 ± 1.8 vs. 12.7 ± 1.2 µm; P < 0.0001). Conversely, female mice had decreased wall thickness (6.8 ± 0.6 vs. 15.3 ± 0.9 µm; P = 0.0002). Intact female mice had higher proportions of circulating CD3+ T cells on day 3 (P = 0.0043), CD4+ (P = 0.0003) and CD8+ T cells (P = 0.005) on day 7, and CD11b+ monocytes on day 3 (P = 0.0046). After gonadectomy, these differences disappeared. In intact female mice, CD3+ T cells (P = 0.025), CD4+ T cells (P = 0.0178), CD8+ T cells (P = 0.0571), and CD68+ macrophages (P = 0.0078) increased in the fistula wall on days 3 and 7. This disappeared after gonadectomy. Furthermore, female mice had higher IL-10 (P = 0.0217) and TNF-α (P = 0.0417) levels in their AVF walls than male mice. Sex hormones mediate AVF maturation, suggesting that hormone receptor signaling may be a target to improve AVF maturation.NEW & NOTEWORTHY After arteriovenous fistula creation, females have lower rates of maturation and higher rates of failure than males. In a mouse model of venous adaptation that recapitulates human fistula maturation, sex hormones may be mechanisms of the sexual dimorphism: testosterone is associated with reduced shear stress, whereas estrogen is associated with increased immune cell recruitment. Modulating sex hormones or downstream effectors suggests sex-specific therapies and could address disparities in sex differences in clinical outcomes.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Humanos , Masculino , Femenino , Ratones , Animales , Linfocitos T CD8-positivos , Maduración Sexual , Ratones Endogámicos C57BL , Derivación Arteriovenosa Quirúrgica/efectos adversos , Modelos Animales de Enfermedad , Testosterona , Inmunidad , Diálisis Renal
13.
Clin Transplant ; 37(12): e15153, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37792313

RESUMEN

PURPOSE OF THE REVIEW: Cardiac allograft vasculopathy (CAV) is a progressive fibroproliferative disease which occurs after heart transplantation and is associated with significant long-term morbidity and mortality. Currently available strategies including statins, mammalian target of rapamycin (mTOR) inhibitors, and revascularization, have limited overall effectiveness in treating this pathology once the disease process is established. mTOR inhibitors, while effective when used early in the disease process, are not well tolerated, and hence not routinely used in post-transplant care. RECENT DATA: Recent work on rodent models have given us a novel mechanistic understanding of effects of ascorbic acid in preventing CAV. TET methyl cytosine dioxygenase2 (TET2) reduces vascular smooth muscle cell (VSMC) apoptosis and intimal thickening. TET2 is repressed by interferon γ (IFNγ) in the setting of CAV. Ascorbic acid has been shown to promote TET2 activity and attenuate allograft vasculopathy in animal models and CAV progression in a small clinical trial. SUMMARY: CAV remains a challenging disease process and needs better preventative strategies. Ascorbic acid improves endothelial dysfunction, reduces reactive oxygen species, and prevents development of intimal hyperplasia by preventing smooth muscle cell apoptosis and hyperproliferation. Further large-scale randomized control studies of ascorbic acid are needed to establish the role in routine post-transplant management.


Asunto(s)
Cardiopatías , Trasplante de Corazón , Enfermedades Vasculares , Animales , Humanos , Ácido Ascórbico/uso terapéutico , Cardiopatías/etiología , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/etiología , Enfermedades Vasculares/prevención & control , Trasplante Homólogo , Trasplante de Corazón/efectos adversos , Aloinjertos , Mamíferos
14.
Circulation ; 144(6): 455-470, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34111946

RESUMEN

BACKGROUND: Coronary allograft vasculopathy (CAV) is a devastating sequela of heart transplant in which arterial intimal thickening limits coronary blood flow. There are currently no targeted therapies to prevent or reduce this pathology that leads to transplant failure. Vascular smooth muscle cell (VSMC) phenotypic plasticity is critical in CAV neointima formation. TET2 (TET methylcytosine dioxygenase 2) is an important epigenetic regulator of VSMC phenotype, but the role of TET2 in the progression of CAV is unknown. METHODS: We assessed TET2 expression and activity in human CAV and renal transplant samples. We also used the sex-mismatched murine aortic graft model of graft arteriopathy (GA) in wild-type and inducible smooth muscle-specific Tet2 knockout mice; and in vitro studies in murine and human VSMCs using knockdown, overexpression, and transcriptomic approaches to assess the role of TET2 in VSMC responses to IFNγ (interferon γ), a cytokine elaborated by T cells that drives CAV progression. RESULTS: In the present study, we found that TET2 expression and activity are negatively regulated in human CAV and renal transplant samples and in the murine aortic graft model of GA. IFNγ was sufficient to repress TET2 and induce an activated VSMC phenotype in vitro. TET2 depletion mimicked the effects of IFNγ, and TET2 overexpression rescued IFNγ-induced dedifferentiation. VSMC-specific TET2 depletion in aortic grafts, and in the femoral wire restenosis model, resulted in increased VSMC apoptosis and medial thinning. In GA, this apoptosis was tightly correlated with proliferation. In vitro, TET2-deficient VSMCs undergo apoptosis more readily in response to IFNγ and expressed a signature of increased susceptibility to extrinsic apoptotic signaling. Enhancing TET2 enzymatic activity with high-dose ascorbic acid rescued the effect of GA-induced VSMC apoptosis and intimal thickening in a TET2-dependent manner. CONCLUSIONS: TET2 is repressed in CAV and GA, likely mediated by IFNγ. TET2 serves to protect VSMCs from apoptosis in the context of transplant vasculopathy or IFNγ stimulation. Promoting TET2 activity in vivo with systemic ascorbic acid reduces VSMC apoptosis and intimal thickening. These data suggest that promoting TET2 activity in CAV may be an effective strategy for limiting CAV progression.


Asunto(s)
Apoptosis/genética , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Miocitos del Músculo Liso/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patología , Enfermedades Vasculares/etiología , Enfermedades Vasculares/metabolismo , Aloinjertos , Animales , Biomarcadores , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Trasplante de Corazón/efectos adversos , Humanos , Inmunohistoquímica , Interferón gamma/metabolismo , Ratones , Ratones Noqueados , Factor de Transcripción STAT1 , Transducción de Señal , Enfermedades Vasculares/patología
15.
Circulation ; 143(4): 354-371, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33207953

RESUMEN

BACKGROUND: Aberrant expression of circular RNA contributes to human diseases. Circular RNAs regulate gene expression by sequestering specific microRNAs. In this study, we investigated whether circMAP3K5 (circular mitogen-activated protein kinase 5) could act as a competing endogenous microRNA-22-3p (miR-22-3p) sponge and regulate neointimal hyperplasia. METHODS: Circular RNA profiling from genome-wide RNA sequencing data was compared between human coronary artery smooth muscle cells (SMCs) treated with or without platelet-derived growth factor. Expression levels of circMAP3K5 were assessed in human coronary arteries from autopsies on patients with dilated cardiomyopathy or coronary heart disease. The role of circMAP3K5 in intimal hyperplasia was further investigated in mice with adeno-associated virus 9-mediated circMAP3K5 transfection. SMC-specific Tet2 (ten-eleven translocation-2) knockout mice and global miR-22-3p knockout mice were used to delineate the mechanism by which circMAP3K5 attenuated neointimal hyperplasia using the femoral arterial wire injury model. RESULTS: RNA sequencing demonstrated that treatment with platelet-derived growth factor-BB significantly reduced expression of circMAP3K5 in human coronary artery SMCs. Wire-injured mouse femoral arteries and diseased arteries from patients with coronary heart disease (where platelet-derived growth factor-BB is increased) confirmed in vivo downregulation of circMAP3K5 associated with injury and disease. Lentivirus-mediated overexpression of circMAP3K5 inhibited the proliferation of human coronary artery SMCs. In vivo adeno-associated virus 9-mediated transfection of circMap3k5 (mouse circular Map3k5) specifically inhibited SMC proliferation in the wire-injured mouse arteries, resulting in reduced neointima formation. Using a luciferase reporter assay and RNA pull-down, circMAP3K5 (human circular MAP3K5) was found to sequester miR-22-3p, which, in turn, inhibited the expression of TET2. Both in vitro and in vivo results demonstrate that the loss of miR-22-3p recapitulated the antiproliferative effect of circMap3k5 on vascular SMCs. In SMC-specific Tet2 knockout mice, loss of Tet2 abolished the circMap3k5-mediated antiproliferative effect on vascular SMCs. CONCLUSIONS: We identify circMAP3K5 as a master regulator of TET2-mediated vascular SMC differentiation. Targeting the circMAP3K5/miR-22-3p/TET2 axis may provide a potential therapeutic strategy for diseases associated with intimal hyperplasia, including restenosis and atherosclerosis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , MicroARNs/metabolismo , Miocitos del Músculo Liso/patología , ARN Circular/metabolismo , Túnica Íntima/metabolismo , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Humanos , Hiperplasia/metabolismo , Hiperplasia/patología , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Miocitos del Músculo Liso/metabolismo , ARN Circular/genética , Túnica Íntima/patología
16.
Circ Res ; 127(7): 855-873, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32597702

RESUMEN

RATIONALE: Kawasaki disease (KD) is an acute vasculitis of early childhood that can result in permanent coronary artery structural damage. The cause for this arterial vulnerability in up to 15% of patients with KD is unknown. Vascular smooth muscle cell dedifferentiation play a key role in the pathophysiology of medial damage and aneurysm formation, recognized arterial pathology in KD. Platelet hyperreactivity is also a hallmark of KD. We recently demonstrated that uptake of platelets and platelet-derived miRNAs influences vascular smooth muscle cell phenotype in vivo. OBJECTIVE: We set out to explore whether platelet/vascular smooth muscle cell (VSMC) interactions contribute to coronary pathology in KD. METHODS AND RESULTS: We prospectively recruited and studied 242 patients with KD, 75 of whom had documented coronary artery pathology. Genome-wide miRNA sequencing and droplet digital PCR demonstrated that patient with KD platelets have significant induction of miR-223 compared with healthy controls (HCs). Platelet-derived miR-223 has recently been shown to promote vascular smooth muscle quiescence and resolution of wound healing after vessel injury. Paradoxically, patients with KD with the most severe coronary pathology (giant coronary artery aneurysms) exhibited a lack of miR-223 induction. Hyperactive platelets isolated from patients with KD are readily taken up by VSMCs, delivering functional miR-223 into the VSMCs promoting VSMC differentiation via downregulation of PDGFRß (platelet-derived growth factor receptor ß). The lack of miR-223 induction in patients with severe coronary pathology leads to persistent VSMC dedifferentiation. In a mouse model of KD (Lactobacillus casei cell wall extract injection), miR-223 knockout mice exhibited increased medial thickening, loss of contractile VSMCs in the media, and fragmentation of medial elastic fibers compared with WT mice, which demonstrated significant miR-223 induction upon Lactobacillus casei cell wall extract challenge. The excessive arterial damage in the miR-223 knockout could be rescued by adoptive transfer of platelet, administration of miR-223 mimics, or the PDGFRß inhibitor imatinib mesylate. Interestingly, miR-223 levels progressively increase with age, with the lowest levels found in <5-year-old. This provides a basis for coronary pathology susceptibility in this very young cohort. CONCLUSIONS: Platelet-derived miR-223 (through PDGFRß inhibition) promotes VSMC differentiation and resolution of KD induced vascular injury. Lack of miR-223 induction leads to severe coronary pathology characterized by VSMC dedifferentiation and medial damage. Detection of platelet-derived miR-223 in patients with KD (at the time of diagnosis) may identify patients at greatest risk of coronary artery pathology. Moreover, targeting platelet miR-223 or VSMC PDGFRß represents potential therapeutic strategies to alleviate coronary pathology in KD. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Plaquetas/metabolismo , Enfermedad de la Arteria Coronaria/etiología , MicroARNs/sangre , MicroARNs/metabolismo , Síndrome Mucocutáneo Linfonodular/complicaciones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Adulto , Factores de Edad , Animales , Estudios de Casos y Controles , Células Cultivadas , Niño , Preescolar , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Lactante , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Síndrome Mucocutáneo Linfonodular/sangre , Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome Mucocutáneo Linfonodular/genética , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Activación Plaquetaria , Estudios Prospectivos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Índice de Severidad de la Enfermedad , Transducción de Señal , Adulto Joven
17.
J Trauma Nurs ; 29(5): 266-271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36095274

RESUMEN

BACKGROUND: Trauma performance improvement programs are required by the American College of Surgeons to review all nonsurgical admissions if the annual rate exceeds 10%. These reviews can have varying consistency between reviewers, are time consuming, and the consequent aggregate data are difficult to evaluate for trends. OBJECTIVE: This study set forth to standardize nonsurgical admission review through validation of the Nelson tool, which is a published objective scoring tool to determine the appropriateness of nonsurgical admissions. We hypothesized that implementation of this tool would facilitate earlier identification of events resulting in meaningful intervention and a reduction of inappropriate nonsurgical admissions. METHODS: The Nelson tool and scoring was integrated into the nonsurgical admission review process. A customized audit filter and report were built in the trauma registry. Data were reviewed with respect to scores and admitting service. Statistical analysis included using analysis of variance and t tests to examine differences between admitting services, χ2 test of independence or Fisher's exact to test the association of categorical variables, and ordinal logistic regression to test the ability of the total Nelson tool to predict appropriateness of admission. RESULTS: Using the Nelson tool, scores resulted in appropriate admission service in over 90% of cases. Implementation of the tool resulted in a decreased performance improvement workload with a 78% reduction in nonsurgical admission cases required to go to secondary level of review. CONCLUSIONS: Utilization of a validated scoring tool decreases performance improvement workload without compromising patient safety.


Asunto(s)
Hospitalización , Admisión del Paciente , Humanos , Modelos Logísticos , Sistema de Registros , Medición de Riesgo
18.
Proc Natl Acad Sci U S A ; 115(17): E4120-E4129, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29632208

RESUMEN

Seeds employ sensory systems that assess various environmental cues over time to maximize the successful transition from embryo to seedling. Here we show that the Arabidopsis F-BOX protein COLD TEMPERATURE-GERMINATING (CTG)-10, identified by activation tagging, is a positive regulator of this process. When overexpressed (OE), CTG10 hastens aspects of seed germination. CTG10 is expressed predominantly in the hypocotyl, and the protein is localized to the nucleus. CTG10 interacts with PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) and helps regulate its abundance in plantaCTG10-OE accelerates the loss of PIF1 in light, increasing germination efficiency, while PIF1-OE lines fail to complete germination in darkness, which is reversed by concurrent CTG10-OE Double-mutant (pif1 ctg10) lines demonstrated that PIF1 is epistatic to CTG10. Both CTG10 and PIF1 amounts decline during seed germination in the light but reaccumulate in the dark. PIF1 in turn down-regulates CTG10 transcription, suggesting a feedback loop of CTG10/PIF1 control. The genetic, physiological, and biochemical evidence, when taken together, leads us to propose that PIF1 and CTG10 coexist, and even accumulate, in the nucleus in darkness, but that, following illumination, CTG10 assists in reducing PIF1 amounts, thus promoting the completion of seed germination and subsequent seedling development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Germinación/fisiología , Semillas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Secuencia Kelch , Semillas/genética
20.
Circulation ; 139(5): 679-693, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30586711

RESUMEN

BACKGROUND: Vascular smooth muscle cells (SMCs) synthesize extracellular matrix (ECM) that contributes to tissue remodeling after revascularization interventions. The cytokine transforming growth factor ß (TGF-ß) is induced on tissue injury and regulates tissue remodeling and wound healing, but dysregulated signaling results in excess ECM deposition and fibrosis. The LIM (Lin11, Isl-1 & Mec-3) domain protein LIM domain only 7 (LMO7) is a TGF-ß1 target gene in hepatoma cells, but its role in vascular physiology and fibrosis is unknown. METHODS: We use carotid ligation and femoral artery denudation models in mice with global or inducible smooth muscle-specific deletion of LMO7, and knockout, knockdown, overexpression, and mutagenesis approaches in mouse and human SMC, and human arteriovenous fistula and cardiac allograft vasculopathy samples to assess the role of LMO7 in neointima and fibrosis. RESULTS: We demonstrate that LMO7 is induced postinjury and by TGF-ß in SMC in vitro. Global or SMC-specific LMO7 deletion enhanced neointimal formation, TGF-ß signaling, ECM deposition, and proliferation in vascular injury models. LMO7 loss of function in human and mouse SMC enhanced ECM protein expression at baseline and after TGF-ß treatment. TGF-ß neutralization or receptor antagonism prevented the exacerbated neointimal formation and ECM synthesis conferred by loss of LMO7. Notably, loss of LMO7 coordinately amplified TGF-ß signaling by inducing expression of Tgfb1 mRNA, TGF-ß protein, αv and ß3 integrins that promote activation of latent TGF-ß, and downstream effectors SMAD3 phosphorylation and connective tissue growth factor. Mechanistically, the LMO7 LIM domain interacts with activator protein 1 transcription factor subunits c-FOS and c-JUN and promotes their ubiquitination and degradation, disrupting activator protein 1-dependent TGF-ß autoinduction. Importantly, preliminary studies suggest that LMO7 is upregulated in human intimal hyperplastic arteriovenous fistula and cardiac allograft vasculopathy samples, and inversely correlates with SMAD3 phosphorylation in cardiac allograft vasculopathy. CONCLUSIONS: LMO7 is induced by TGF-ß and serves to limit vascular fibrotic responses through negative feedback regulation of the TGF-ß pathway. This mechanism has important implications for intimal hyperplasia, wound healing, and fibrotic diseases.


Asunto(s)
Proteínas con Dominio LIM/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación Vascular , Lesiones del Sistema Vascular/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Retroalimentación Fisiológica , Fibrosis , Hiperplasia , Integrina alfaVbeta3/metabolismo , Proteínas con Dominio LIM/deficiencia , Proteínas con Dominio LIM/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Neointima , Transducción de Señal , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta1/genética , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA