Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38341805

RESUMEN

RNA-protein interactions are essential to RNA function throughout biology. Identifying the protein interactions associated with a specific RNA, however, is currently hindered by the need for RNA labeling or costly tiling-based approaches. Conventional strategies, which commonly rely on affinity pull-down approaches, are also skewed to the detection of high affinity interactions and frequently miss weaker interactions that may be biologically important. Reported here is the first adaptation of stability-based mass spectrometry methods for the global analysis of RNA-protein interactions. The stability of proteins from rates of oxidation (SPROX) and thermal protein profiling (TPP) methods are used to identify the protein targets of three RNA ligands, the MALAT1 triple helix (TH), a viral stem loop (SL), and an unstructured RNA (PolyU), in LNCaP nuclear lysate. The 315 protein hits with RNA-induced conformational and stability changes detected by TPP and/or SPROX were enriched in previously annotated RNA-binding proteins and included new proteins for hypothesis generation. Also demonstrated are the orthogonality of the SPROX and TPP approaches and the utility of the domain-specific information available with SPROX. This work establishes a novel platform for the global discovery and interrogation of RNA-protein interactions that is generalizable to numerous biological contexts and RNA targets.

2.
Anal Biochem ; 663: 115019, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36526022

RESUMEN

Ras family GTPases (H/K/N-Ras) modulate numerous effectors, including the lipid kinase PI3K (phosphatidylinositol-3-kinase) that generates growth signal lipid PIP3 (phosphatidylinositol-3,4,5-triphosphate). Active GTP-Ras binds PI3K with high affinity, thereby stimulating PIP3 production. We hypothesize the affinity of this binding interaction could be significantly increased or decreased by Ras mutations at PI3K contact positions, with clinical implications since some Ras mutations at PI3K contact positions are disease-linked. To enable tests of this hypothesis, we have developed an approach combining UV spectral deconvolution, HPLC, and microscale thermophoresis to quantify the KD for binding. The approach measures the total Ras concentration, the fraction of Ras in the active state, and the affinity of active Ras binding to its docking site on PI3K Ras binding domain (RBD) in solution. The approach is illustrated by KD measurements for the binding of active H-Ras and representative mutants, each loaded with GTP or GMPPNP, to PI3Kγ RBD. The findings demonstrate that quantitation of the Ras activation state increases the precision of KD measurements, while also revealing that Ras mutations can increase (Q25L), decrease (D38E, Y40C), or have no effect (G13R) on PI3K binding affinity. Significant Ras affinity changes are predicted to alter PI3K regulation and PIP3 growth signals.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas ras , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/química , Unión Proteica , Guanosina Trifosfato/metabolismo , Fosfatidilinositoles
3.
Anal Biochem ; 631: 114338, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34433016

RESUMEN

The Ras superfamily of small G proteins play central roles in diverse signaling pathways. Superfamily members act as molecular on-off switches defined by their occupancy with GTP or GDP, respectively. In vitro functional studies require loading with a hydrolysis-resistant GTP analogue to increase the on-state lifetime, as well as knowledge of fractional loading with activating and inactivating nucleotides. The present study describes a method combining elements of previous approaches with new, optimized features to analyze the bound nucleotide composition of a G protein loaded with activating (GMPPNP) or inactivating (GDP) nucleotide. After nucleotide loading, the complex is washed to remove unbound nucleotides then bound nucleotides are heat-extracted and subjected to ion-paired, reverse-phase HPLC-UV to resolve, identify and quantify the individual nucleotide components. These data enable back-calculation to the nucleotide composition and fractional activation of the original, washed G protein population prior to heat extraction. The method is highly reproducible. Application to multiple HRas preparations and mutants confirms its ability to fully extract and analyze bound nucleotides, and to resolve the fractional on- and off-state populations. Furthermore, the findings yield a novel hypothesis for the molecular disease mechanism of Ras mutations at the E63 and Y64 positions.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Nucleótidos de Guanina/análisis , Nucleótidos de Guanina/metabolismo , Proteínas ras/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Calor , Hidrólisis , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Rayos Ultravioleta , Proteínas ras/genética
4.
ACS Chem Biol ; 17(9): 2437-2447, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35984959

RESUMEN

The rapidly accelerating characterization of RNA tertiary structures has revealed their pervasiveness and active roles in human diseases. Small molecule-mediated modulation of RNA tertiary structures constitutes an attractive avenue for the development of tools for therapeutically targeting and/or uncovering the pathways associated with these RNA motifs. This potential has been highlighted by targeting of the triple helix present at the 3'-end of the noncoding RNA MALAT1, a transcript implicated in several human diseases. This triplex has been reported to decrease the susceptibility of the transcript to degradation and promote its cellular accumulation. While small molecules have been shown to bind to and impact the stability of the MALAT1 triple helix, the small molecule properties that lead to these structural modulations are not well understood. We designed a library utilizing the diminazene scaffold, which is underexplored but precedented for nucleic acid binding, to target the MALAT1 triple helix. We employed multiple assays to holistically assess what parameters, if any, could predict the small molecule affinity and effect on triplex stability. We designed and/or optimized competition, calorimetry, and thermal shift assays as well as an enzymatic degradation assay, the latter of which led to the discovery of bidirectional modulators of triple helix stability within the scaffold-centric library. Determination of quantitative structure-activity relationships afforded predictive models for both affinity- and stability-based assays. This work establishes a suite of powerful orthogonal biophysical tools for the evaluation of small molecule:RNA triplex interactions that generate predictive models and will allow small molecule interrogation of the growing body of disease-associated RNA triple helices.


Asunto(s)
ARN Largo no Codificante , Calorimetría , Diminazeno , Biblioteca de Genes , Humanos , Conformación de Ácido Nucleico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA