Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585842

RESUMEN

There is currently no effective long-term treatment for ovarian cancer (OC) resistant to poly-chemotherapy regimens based on platinum drugs. Preclinical and clinical studies have demonstrated a strong association between development of Pt-drug resistance and increased thymidylate synthase (hTS) expression, and the consequent cross-resistance to the hTS inhibitors 5-fluorouracil (5-FU) and raltitrexed (RTX). In the present work, we propose a new tool to combat drug resistance. We propose to treat OC cell lines, both Pt-sensitive and -resistant, with dual combinations of one of the four chemotherapeutic agents that are widely used in the clinic, and the new peptide, hTS inhibitor, [D-Gln4]LR. This binds hTS allosterically and, unlike classical inhibitors that bind at the catalytic pocket, causes cell growth inhibition without inducing hTS overexpression. The dual drug combinations showed schedule-dependent synergistic antiproliferative and apoptotic effects. We observed that the simultaneous treatment or 24h pre-treatment of OC cells with the peptide followed by either agent produced synergistic effects even in resistant cells. Similar synergistic or antagonistic effects were obtained by delivering the peptide into OC cells either by means of a commercial delivery system (SAINT-PhD) or by pH sensitive PEGylated liposomes. Relative to non-PEGylated liposomes, the latter had been previously characterized and found to allow macrophage escape, thus increasing their chance to reach the tumour tissue. The transition from the SAINT-PhD delivery system to the engineered liposomes represents an advancement towards a more drug-like delivery system and a further step towards the use of peptides for in vivo studies. Overall, the results suggest that the association of standard drugs, such as cDDP and/or 5-FU and/or RTX, with the novel peptidic TS inhibitor encapsulated into PEGylated pH-sensitive liposomes can represent a promising strategy for fighting resistance to cDDP and anti-hTS drugs.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Liposomas/química , Neoplasias Ováricas/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Apoptosis , Proliferación Celular , Quimioterapia Combinada , Femenino , Fluorouracilo/farmacología , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Polietilenglicoles/química , Quinazolinas/farmacología , Tiofenos/farmacología , Células Tumorales Cultivadas
2.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817267

RESUMEN

Ovarian cancer is the most lethal gynecological malignancy, often because of the frequent insurgence of chemoresistance to the drugs currently used. Thus, new therapeutical agents are needed. We tested the toxicity of 16 new DNA-intercalating agents to cisplatin (cDDP)-sensitive human ovarian carcinoma cell lines and their resistant counterparts. The compounds were the complexes of Pt(II) or Pd(II) with bipyridyl (bipy) and phenanthrolyl (phen) and with four different thiourea ancillary ligands. Within each of the four series of complexes characterized by the same thiourea ligand, the Pd(phen) drugs invariably showed the highest anti-proliferative efficacy. This paralleled both a higher intracellular drug accumulation and a more efficient DNA intercalation than all the other metal-bidentate ligand combinations. The consequent inhibition of topoisomerase II activity led to the greatest inhibition of DNA metabolism, evidenced by the inhibition of the expression of the folate cycle enzymes and a marked perturbation of cell-cycle distribution in both cell lines. These findings indicate that the particular interaction of Pd(II) with phenanthroline confers the best pharmacokinetic and pharmacodynamic properties that make this class of DNA intercalators remarkable inhibitors, even of the resistant cell growth.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Resistencia a Antineoplásicos/efectos de los fármacos , Sustancias Intercalantes/farmacología , Fenantrolinas/química , Tiourea/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/farmacología , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , ADN/química , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/metabolismo , Femenino , Humanos , Sustancias Intercalantes/química , Ligandos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Paladio/química , Platino (Metal)/química
3.
Molecules ; 24(19)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561530

RESUMEN

Thymidylate synthase (TS) is a prominent drug target for different cancer types. However, the prolonged use of its classical inhibitors, substrate analogs that bind at the active site, leads to TS overexpression and drug resistance in the clinic. In the effort to identify anti-TS drugs with new modes of action and able to overcome platinum drug resistance in ovarian cancer, octapeptides with a new allosteric inhibition mechanism were identified as cancer cell growth inhibitors that do not cause TS overexpression. To improve the biological properties, 10 cyclic peptides (cPs) were designed from the lead peptides and synthesized. The cPs were screened for the ability to inhibit recombinant human thymidylate synthase (hTS), and peptide 7 was found to act as an allosteric inhibitor more potent than its parent open-chain peptide [Pro3]LR. In cytotoxicity studies on three human ovarian cancer cell lines, IGROV-1, A2780, and A2780/CP, peptide 5 and two other cPs, including 7, showed IC50 values comparable with those of the reference drug 5-fluorouracil, of the open-chain peptide [d-Gln4]LR, and of another seven prolyl derivatives of the lead peptide LR. These promising results indicate cP 7 as a possible lead compound to be chemically modified with the aim of improving both allosteric TS inhibitory activity and anticancer effectiveness.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Sitio Alostérico , Sitios de Unión , Línea Celular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Activación Enzimática , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad
4.
Pharm Res ; 35(11): 206, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209680

RESUMEN

PURPOSE: To evaluate the potential effects of PEGylated pH-sensitive liposomes on the intracellular activity of a new peptide recently characterized as a novel inhibitor of the human thymidylate synthase (hTS) over-expressed in many drug-resistant human cancer cell lines. METHODS: Peptide-loaded pH-sensitive PEGylated (PpHL) and non-PEGylated liposomes (nPpHL) were carefully characterized and delivered to cis-platinum resistant ovarian cancer C13* cells; the influence of the PpHL on the drug intracellular activity was investigated by the Western Blot analysis of proteins involved in the pathway affected by hTS inhibition. RESULTS: Although PpHL and nPpHL showed different sizes, surface hydrophilicities and serum stabilities, both carriers entrapped the drug efficiently and stably demonstrating a pH dependent release; moreover, the different behavior against J774 macrophage cells confirmed the ability of PEGylation in protecting liposomes from the reticuloendothelial system. Comparable effects were instead observed against C13* cells and biochemical data by immunoblot analysis indicated that PEGylated pH-sensitive liposomes do not modify the proteomic profile of the cells, fully preserving the activity of the biomolecule. CONCLUSION: PpHL can be considered as efficient delivery systems for the new promising anti-cancer peptide.


Asunto(s)
Antineoplásicos/farmacología , Portadores de Fármacos/química , Liposomas/química , Nanopartículas/química , Oligopéptidos/farmacología , Animales , Antineoplásicos/química , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Liberación de Fármacos , Resistencia a Antineoplásicos , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Oligopéptidos/química , Tamaño de la Partícula , Polietilenglicoles/química , Timidilato Sintasa/antagonistas & inhibidores
5.
Drug Resist Updat ; 23: 20-54, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26690339

RESUMEN

Our current understanding of the mechanisms of action of antitumor agents and the precise mechanisms underlying drug resistance is that these two processes are directly linked. Moreover, it is often possible to delineate chemoresistance mechanisms based on the specific mechanism of action of a given anticancer drug. A more holistic approach to the chemoresistance problem suggests that entire metabolic pathways, rather than single enzyme targets may better explain and educate us about the complexity of the cellular responses upon cytotoxic drug administration. Drugs, which target thymidylate synthase and folate-dependent enzymes, represent an important therapeutic arm in the treatment of various human malignancies. However, prolonged patient treatment often provokes drug resistance phenomena that render the chemotherapeutic treatment highly ineffective. Hence, strategies to overcome drug resistance are primarily designed to achieve either enhanced intracellular drug accumulation, to avoid the upregulation of folate-dependent enzymes, and to circumvent the impairment of DNA repair enzymes which are also responsible for cross-resistance to various anticancer drugs. The current clinical practice based on drug combination therapeutic regimens represents the most effective approach to counteract drug resistance. In the current paper, we review the molecular aspects of the activity of TS-targeting drugs and describe how such mechanisms are related to the emergence of clinical drug resistance. We also discuss the current possibilities to overcome drug resistance by using a molecular mechanistic approach based on medicinal chemistry methods focusing on rational structural modifications of novel antitumor agents. This paper also focuses on the importance of the modulation of metabolic pathways upon drug administration, their analysis and the assessment of their putative roles in the networks involved using a meta-analysis approach. The present review describes the main pathways that are modulated by TS-targeting anticancer drugs starting from the description of the normal functioning of the folate metabolic pathway, through the protein modulation occurring upon drug delivery to cultured tumor cells as well as cancer patients, finally describing how the pathways are modulated by drug resistance development. The data collected are then analyzed using network/netwire connecting methods in order to provide a wider view of the pathways involved and of the importance of such information in identifying additional proteins that could serve as novel druggable targets for efficacious cancer therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Antagonistas del Ácido Fólico/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Neoplasias/tratamiento farmacológico , Timidilato Sintasa/antagonistas & inhibidores , Ensayos Clínicos como Asunto , Resistencia a Antineoplásicos/genética , Inhibidores Enzimáticos/uso terapéutico , Ácido Fólico/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Medicina de Precisión , Transducción de Señal , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo
6.
Nucleic Acids Res ; 41(7): 4159-70, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23423353

RESUMEN

Resistance to drugs targeting human thymidylate synthase (TS) poses a major challenge in the field of anti-cancer therapeutics. Overexpression of the TS protein has been implicated as one of the factors leading to the development of resistance. Therefore, repressing translation by targeting the TS mRNA could help to overcome this problem. In this study, we report that the compound Hoechst 33258 (HT) can reduce cellular TS protein levels without altering TS mRNA levels, suggesting that it modulates TS expression at the translation level. We have combined nuclear magnetic resonance, UV-visible and fluorescence spectroscopy methods with docking and molecular dynamics simulations to study the interaction of HT with a region in the TS mRNA. The interaction predominantly involves intercalation of HT at a CC mismatch in the region near the translational initiation site. Our results support the use of HT-like compounds to guide the design of therapeutic agents targeting TS mRNA.


Asunto(s)
Antineoplásicos/química , Bisbenzimidazol/química , Bisbenzimidazol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Timidilato Sintasa/genética , Antineoplásicos/farmacología , Disparidad de Par Base , Sitios de Unión , Línea Celular Tumoral , Humanos , Sustancias Intercalantes/química , Sustancias Intercalantes/farmacología , Modelos Moleculares , ARN Mensajero/química , ARN Mensajero/metabolismo , Timidilato Sintasa/metabolismo
7.
J Proteome Res ; 13(11): 5250-61, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25196676

RESUMEN

The preclinical study of the mechanism of action of anticancer small molecules is challenging due to the complexity of cancer biology and the fragmentary nature of available data. With the aim of identifying a protein subset characterizing the cellular activity of anticancer peptides, we used differential mass spectrometry to identify proteomic changes induced by two peptides, LR and [d-Gln(4)]LR, that inhibit cell growth and compared them with the changes induced by a known drug, pemetrexed, targeting the same enzyme, thymidylate synthase. The quantification of the proteome of an ovarian cancer cell model treated with LR yielded a differentially expressed protein data set with respect to untreated cells. This core set was expanded by bioinformatic data interpretation, the biologically relevant proteins were selected, and their differential expression was validated on three cis-platinum sensitive and resistant ovarian cancer cell lines. Via clustering of the protein network features, a broader view of the peptides' cellular activity was obtained. Differences from the mechanism of action of pemetrexed were inferred from different modulation of the selected proteins. The protein subset identification represents a method of general applicability to characterize the cellular activity of preclinical compounds and a tool for monitoring the cellular activity of novel drug candidates.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Péptidos/farmacología , Proteínas/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Antineoplásicos/química , Western Blotting , Línea Celular Tumoral/efectos de los fármacos , Biología Computacional/métodos , Femenino , Ácido Fólico/metabolismo , Glutamatos/farmacología , Guanina/análogos & derivados , Guanina/farmacología , Humanos , Espectrometría de Masas/métodos , Terapia Molecular Dirigida , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Pemetrexed , Péptidos/química , Proteínas/análisis , Reproducibilidad de los Resultados , Timidilato Sintasa/antagonistas & inhibidores , Timidilato Sintasa/metabolismo
8.
Proc Natl Acad Sci U S A ; 108(34): E542-9, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21795601

RESUMEN

Human thymidylate synthase is a homodimeric enzyme that plays a key role in DNA synthesis and is a target for several clinically important anticancer drugs that bind to its active site. We have designed peptides to specifically target its dimer interface. Here we show through X-ray diffraction, spectroscopic, kinetic, and calorimetric evidence that the peptides do indeed bind at the interface of the dimeric protein and stabilize its di-inactive form. The "LR" peptide binds at a previously unknown binding site and shows a previously undescribed mechanism for the allosteric inhibition of a homodimeric enzyme. It inhibits the intracellular enzyme in ovarian cancer cells and reduces cellular growth at low micromolar concentrations in both cisplatin-sensitive and -resistant cells without causing protein overexpression. This peptide demonstrates the potential of allosteric inhibition of hTS for overcoming platinum drug resistance in ovarian cancer.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Terapia Molecular Dirigida , Neoplasias Ováricas/enzimología , Péptidos/metabolismo , Péptidos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Femenino , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Péptidos/química , Péptidos/uso terapéutico , Unión Proteica/efectos de los fármacos , Conformación Proteica , Multimerización de Proteína/efectos de los fármacos , Termodinámica , Timidilato Sintasa/química , Timidilato Sintasa/metabolismo
9.
ACS Omega ; 8(20): 18255-18265, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251170

RESUMEN

Cocrystallization of the drug-drug salt-cocrystal of the histone deacetylase inhibitor (HDACi) panobinostat (PAN) and b-rapidly accelerated fibrosarcoma (BRAF) inhibitor dabrafenib (DBF) afforded single crystals of a two-drug salt stabilized by N+-H···O and N+-H···N- hydrogen bonds between the ionized panobinostat ammonium donor and dabrafenib sulfonamide anion acceptor in a 12-member ring motif. A faster dissolution rate for both drugs was achieved through the salt combination compared to the individual drugs in an aqueous acidic medium. The dissolution rate exhibited a peak concentration (Cmax) of approximately 310 mg cm-2 min-1 for PAN and 240 mg cm-2 min-1 for DBF at a Tmax of less than 20 min under gastric pH 1.2 (0.1 N HCl) compared to the pure drug dissolution values of 10 and 80 mg cm-2 min-1, respectively. The novel and fast-dissolving salt DBF-·PAN+ was analyzed in BRAFV600E melanoma cells Sk-Mel28. DBF-·PAN+ reduced the dose-response from micromolar to nanomolar concentrations and lowered IC50 (21.9 ± 7.2 nM) by half compared to PAN alone (45.3 ± 12.0 nM). The enhanced dissolution and lower survival rate of melanoma cells show the potential of novel DBF-·PAN+ salt in clinical evaluation.

10.
Cancers (Basel) ; 15(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37296972

RESUMEN

Immunotherapy is a cancer treatment that exploits the capacity of the body's immune system to prevent, control, and remove cancer. Immunotherapy has revolutionized cancer treatment and significantly improved patient outcomes for several tumor types. However, most patients have not benefited from such therapies yet. Within the field of cancer immunotherapy, an expansion of the combination strategy that targets independent cellular pathways that can work synergistically is predicted. Here, we review some consequences of tumor cell death and increased immune system engagement in the modulation of oxidative stress and ubiquitin ligase pathways. We also indicate combinations of cancer immunotherapies and immunomodulatory targets. Additionally, we discuss imaging techniques, which are crucial for monitoring tumor responses during treatment and the immunotherapy side effects. Finally, the major outstanding questions are also presented, and directions for future research are described.

11.
Cancers (Basel) ; 15(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36672361

RESUMEN

Ovarian cancer is a highly lethal gynecological malignancy. Drug resistance rapidly occurs, and different therapeutic approaches are needed. So far, no biomarkers have been discovered to predict early response to therapies in the case of multi-treated ovarian cancer patients. The aim of our investigation was to identify a protein panel and the molecular pathways involved in chemotherapy response through a combination of studying proteomics and network enrichment analysis by considering a subset of samples from a clinical setting. Differential mass spectrometry studies were performed on 14 serum samples from patients with heavily pretreated platinum-resistant ovarian cancer who received the FOLFOX-4 regimen as a salvage therapy. The serum was analyzed at baseline time (T0) before FOLFOX-4 treatment, and before the second cycle of treatment (T1), with the aim of understanding if it was possible, after a first treatment cycle, to detect significant proteome changes that could be associated with patients responses to therapy. A total of 291 shared expressed proteins was identified and 12 proteins were finally selected between patients who attained partial response or no-response to chemotherapy when both response to therapy and time dependence (T0, T1) were considered in the statistical analysis. The protein panel included APOL1, GSN, GFI1, LCATL, MNA, LYVE1, ROR1, SHBG, SOD3, TEC, VPS18, and ZNF573. Using a bioinformatics network enrichment approach and metanalysis study, relationships between serum and cellular proteins were identified. An analysis of protein networks was conducted and identified at least three biological processes with functional and therapeutic significance in ovarian cancer, including lipoproteins metabolic process, structural component modulation in relation to cellular apoptosis and autophagy, and cellular oxidative stress response. Five proteins were almost independent from the network (LYVE1, ROR1, TEC, GFI1, and ZNF573). All proteins were associated with response to drug-resistant ovarian cancer resistant and were mechanistically connected to the pathways associated with cancer arrest. These results can be the basis for extending a biomarker discovery process to a clinical trial, as an early predictive tool of chemo-response to FOLFOX-4 of heavily treated ovarian cancer patients and for supporting the oncologist to continue or to interrupt the therapy.

12.
Amino Acids ; 42(2-3): 641-53, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21814787

RESUMEN

Acquired resistance to cisplatin (cDDP) is a multifactorial process that represents one of the main problems in ovarian cancer therapy. Distamycin A is a minor groove DNA binder whose toxicity has limited its use and prompted the synthesis of derivatives such as NAX001 and NAX002, which have a carbamoyl moiety and different numbers of pyrrolamidine groups. Their interaction with a B-DNA model and with an extended-TATA box model, [Polyd(AT)], was investigated using isothermal titration calorimetry (ITC) to better understand their mechanism of interaction with DNA and therefore better explain their cellular effects. Distamycin A interactions with Dickerson and Poly[d(AT)(6)] oligonucleotides show a different thermodynamic with respect to NAX002. The bulkier distamycin A analogue shows a non optimal binding to DNA due to its additional pyrrolamidine group. Cellular assays performed on cDDP-sensitive and -resistant cells showed that these compounds, distamycin A in particular, affect the expression of folate cycle enzymes even at cellular level. The optimal interaction of distamycin A with DNA may account for the down-regulation of both dihydrofolate reductase (DHFR) and thymidylate synthase (TS) and the up-regulation of spermidine/spermine N1-acetyltransferase (SSAT) caused by this compound. These effects seem differently modulated by the cDDP-resistance phenotype. NAX002 which presents a lower affinity to DNA and slightly affected these enzymes, showed a synergic inhibition profile in combination with cDDP. In addition, their combination with cDDP or polyamine analogues increased cell sensitivity to the drugs suggesting that these interactions may have potential for development in the treatment of ovarian carcinoma.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Distamicinas/farmacología , Neoplasias Ováricas/patología , Secuencia de Bases , Línea Celular Tumoral , Cartilla de ADN , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Femenino , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Biomedicines ; 10(7)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35884905

RESUMEN

Recently, we highlighted a novel role for the protein Trichoplein/TCHP/Mitostatin (TpMs), both as mitotic checkpoint regulator and guardian of chromosomal stability. TpMs-depleted cells show numerical and structural chromosome alterations that lead to genomic instability. This condition is a major driving force in malignant transformation as it allows for the cells acquiring new functional capabilities to proliferate and disseminate. Here, the effect of TpMs depletion was investigated in different TpMs-depleted cell lines by means of 3D imaging and 3D Structured illumination Microscopy. We show that TpMs depletion causes alterations in the 3D architecture of telomeres in colon cancer HCT116 cells. These findings are consistent with chromosome alterations that lead to genomic instability. Furthermore, TpMs depletion changes the spatial arrangement of chromosomes and other nuclear components. Modified nuclear architecture and organization potentially induce variations that precede the onset of genomic instability and are considered as markers of malignant transformation. Our present observations connect the tumor suppression ability of TpMs with its novel functions in maintaining the proper chromosomal segregation as well as the proper telomere and nuclear architecture. Further investigations will investigate the connection between alterations in telomeres and nuclear architecture with the progression of human tumors with the aim of developing personalized therapeutic interventions.

14.
Pharmaceutics ; 14(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35214125

RESUMEN

The transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) are the major downstream effectors in the Hippo pathway and are involved in cancer progression through modulation of the activity of TEAD (transcriptional enhanced associate domain) transcription factors. To exploit the advantages of drug repurposing in the search of new drugs, we developed a similar approach for the identification of new hits interfering with TEAD target gene expression. In our study, a 27-member in-house library was assembled, characterized, and screened for its cancer cell growth inhibition effect. In a secondary luciferase-based assay, only seven compounds confirmed their specific involvement in TEAD activity. IA5 bearing a p-quinoid structure reduced the cytoplasmic level of phosphorylated YAP and the YAP-TEAD complex transcriptional activity and reduced cancer cell growth. IA5 is a promising hit compound for TEAD activity modulator development.

15.
Elife ; 112022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36475542

RESUMEN

Drugs that target human thymidylate synthase (hTS), a dimeric enzyme, are widely used in anticancer therapy. However, treatment with classical substrate-site-directed TS inhibitors induces over-expression of this protein and development of drug resistance. We thus pursued an alternative strategy that led us to the discovery of TS-dimer destabilizers. These compounds bind at the monomer-monomer interface and shift the dimerization equilibrium of both the recombinant and the intracellular protein toward the inactive monomers. A structural, spectroscopic, and kinetic investigation has provided evidence and quantitative information on the effects of the interaction of these small molecules with hTS. Focusing on the best among them, E7, we have shown that it inhibits hTS in cancer cells and accelerates its proteasomal degradation, thus causing a decrease in the enzyme intracellular level. E7 also showed a superior anticancer profile to fluorouracil in a mouse model of human pancreatic and ovarian cancer. Thus, over sixty years after the discovery of the first TS prodrug inhibitor, fluorouracil, E7 breaks the link between TS inhibition and enhanced expression in response, providing a strategy to fight drug-resistant cancers.


Asunto(s)
Neoplasias Ováricas , Timidilato Sintasa , Femenino , Animales , Ratones , Humanos , Sitios de Unión , Timidilato Sintasa/química , Timidilato Sintasa/metabolismo , Fluorouracilo/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología
17.
Invest New Drugs ; 29(1): 73-86, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19834646

RESUMEN

The cellular effects of a novel DNA-intercalating agent, the bipyridyl complex of platinum(II) with diphenyl thiourea, [Pt(bipy)(Ph(2)-tu)(2)]Cl(2), has been analyzed in the cisplatin (cDDP)-sensitive human ovarian carcinoma cell line, 2008, and its -resistant variant, C13* cells, in which the highest accumulation and cytotoxicity was found among six related bipyridyl thiourea complexes. We also show here that this complex causes reactive oxygen species to form and inhibits topoisomerase II activity to a greater extent in the sensitive than in the resistant line. The impairment of this enzyme led to DNA damage, as shown by the comet assay. As a consequence, cell cycle distribution has also been greatly perturbed in both lines. Morphological analysis revealed deep cellular derangement with the presence of cellular masses, together with increased membrane permeability and depolarization of the mitochondrial membrane. Some of these effects, sometimes differentially evident between the two cell lines, might also be related to the decrease of total cell magnesium content caused by this thiourea complex both in sensitive and resistant cells, though the basal content of this ion was higher in the cDDP-resistant line. Altogether these results suggest that this compound exerts its cytotoxicity by mechanisms partly mediated by the resistance phenotype. In particular, cDDP-sensitive cells were affected mostly by impairing topoisomerase II activity and by increasing membrane permeability and the formation of reactive oxygen species; conversely, mitochondrial impairment appeared to play the most important role in the action of complex F in resistant cells.


Asunto(s)
2,2'-Dipiridil/farmacología , Cisplatino/farmacología , ADN de Neoplasias/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Sustancias Intercalantes/farmacología , Compuestos Organoplatinos/farmacología , Neoplasias Ováricas/patología , 2,2'-Dipiridil/química , Ciclo Celular/efectos de los fármacos , Fusión Celular , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Sustancias Intercalantes/química , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Magnesio/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Compuestos Organoplatinos/química , Neoplasias Ováricas/enzimología , Especies Reactivas de Oxígeno/metabolismo
18.
Cancers (Basel) ; 13(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923290

RESUMEN

Combining drugs represent an approach to efficiently prevent and overcome drug resistance and to reduce toxicity; yet it is a highly challenging task, particularly if combinations of inhibitors of the same enzyme target are considered. To show that crystallographic and inhibition kinetic information can provide indicators of cancer cell growth inhibition by combinations of two anti-human thymidylate synthase (hTS) drugs, we obtained the X-ray crystal structure of the hTS:raltitrexed:5-fluorodeoxyuridine monophosphate (FdUMP) complex. Its analysis showed a ternary complex with both molecules strongly bound inside the enzyme catalytic cavity. The synergistic inhibition of hTS and its mechanistic rationale were consistent with the structural analysis. When administered in combination to A2780 and A2780/CP ovarian cancer cells, the two drugs inhibited ovarian cancer cell growth additively/synergistically. Together, these results support the idea that X-ray crystallography can provide structural indicators for designing combinations of hTS (or any other target)-directed drugs to accelerate preclinical research for therapeutic application.

19.
J Med Chem ; 64(6): 3204-3221, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33710891

RESUMEN

Drug-target interaction, cellular internalization, and target engagement should be addressed to design a lead with high chances of success in further optimization stages. Accordingly, we have designed conjugates of folic acid with anticancer peptides able to bind human thymidylate synthase (hTS) and enter cancer cells through folate receptor α (FRα) highly expressed by several cancer cells. Mechanistic analyses and molecular modeling simulations have shown that these conjugates bind the hTS monomer-monomer interface with affinities over 20 times larger than the enzyme active site. When tested on several cancer cell models, these conjugates exhibited FRα selectivity at nanomolar concentrations. A similar selectivity was observed when the conjugates were delivered in synergistic or additive combinations with anticancer agents. At variance with 5-fluorouracil and other anticancer drugs that target the hTS catalytic pocket, these conjugates do not induce overexpression of this protein and can thus help combating drug resistance associated with high hTS levels.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Ácido Fólico/análogos & derivados , Péptidos/química , Péptidos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Antineoplásicos/farmacocinética , Dominio Catalítico/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Femenino , Receptor 1 de Folato/metabolismo , Ácido Fólico/farmacocinética , Ácido Fólico/farmacología , Humanos , Modelos Moleculares , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Péptidos/farmacocinética , Timidilato Sintasa/metabolismo
20.
Gynecol Oncol ; 117(2): 202-10, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20031193

RESUMEN

OBJECTIVE: Polyamines have been shown to play a role in the growth and survival of several solid tumors, including ovarian cancer. Intracellular polyamine depletion by the inhibition of biosynthesis enzymes or by the induction of the catabolic pathway leads to antiproliferative effects in many different tumor cell lines. Recent studies showed that the thymidylate synthase inhibitor 5-fluorouracil (5-FU) affects polyamine metabolism in colon carcinoma cells through the induction of the key catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT). METHODS: We therefore examined whether combinations of novel folate cycle inhibitors with quinoxaline structure and drugs that specifically target polyamine metabolism, such as diethylderivatives of norspermine (DENSPM) or spermine (BESpm), have synergistic effect in killing cisplatin-sensitive and drug-resistant daughter human ovarian cell lines. RESULTS: Our results showed that simultaneous drug combination or quinoxaline pre-treatment synergistically increased SSAT expression, depleted polyamines, increased reactive oxygen species production, and produced synergistic tumor cell killing in both cell lines. Of note, this combined therapy increased the chemosensitivity of cisplatin-resistant cells and cross-resistant to the polyamine analogues. On the contrary, some pre-treatment regimens of Spm analogues were antagonistic. CONCLUSIONS: These results show that SSAT plays an important role in novel folate cycle inhibitors effects and suggest that their combination with analogues has potential for development as therapy for ovarian carcinoma based on SSAT modulation.


Asunto(s)
Acetiltransferasas/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Cisplatino/farmacología , Antagonistas del Ácido Fólico/farmacología , Espermina/análogos & derivados , Acetiltransferasas/biosíntesis , Acetiltransferasas/deficiencia , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/enzimología , Cistadenocarcinoma Seroso/patología , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Femenino , Antagonistas del Ácido Fólico/administración & dosificación , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Quinoxalinas/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Espermina/administración & dosificación , Espermina/metabolismo , Espermina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA