Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Glob Chang Biol ; 28(1): 227-244, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34651375

RESUMEN

Lianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees. Those trait discrepancies were hypothesized to be responsible for the competitive advantage of lianas over trees. Yet, in the absence of reliable modelling tools, it is impossible to unravel their impact on the forest energy balance, light competition, and on the liana success in Neotropical forests. To bridge this gap, we performed a meta-analysis of the literature to gather all published liana leaf optical spectra, as well as all canopy spectra measured over different levels of liana infestation. We then used a Bayesian data assimilation framework applied to two radiative transfer models (RTMs) covering the leaf and canopy scales to derive tropical tree and liana trait distributions, which finally informed a full dynamic vegetation model. According to the RTMs inversion, lianas grew thinner, more horizontal leaves with lower pigment concentrations. Those traits made the lianas very efficient at light interception and significantly modified the forest energy balance and its carbon cycle. While forest albedo increased by 14% in the shortwave, light availability was reduced in the understorey (-30% of the PAR radiation) and soil temperature decreased by 0.5°C. Those liana-specific traits were also responsible for a significant reduction of tree (-19%) and ecosystem (-7%) gross primary productivity (GPP) while lianas benefited from them (their GPP increased by +27%). This study provides a novel mechanistic explanation to the increase in liana abundance, new evidence of the impact of lianas on forest functioning, and paves the way for the evaluation of the large-scale impacts of lianas on forest biogeochemical cycles.


Asunto(s)
Ecosistema , Clima Tropical , Teorema de Bayes , Ciclo del Carbono , Bosques
2.
Proc Natl Acad Sci U S A ; 114(48): 12833-12838, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133408

RESUMEN

Modeling efforts focused on future greenhouse gas (GHG) emissions from energy and other sectors in California have shown varying capacities to meet the emissions reduction targets established by the state. These efforts have not included potential reductions from changes in ecosystem management, restoration, and conservation. We examine the scale of contributions from selected activities in natural and agricultural lands and assess the degree to which these actions could help the state achieve its 2030 and 2050 climate mitigation goals under alternative implementation scenarios. By 2030, an Ambitious implementation scenario could contribute as much as 147 MMTCO2e or 17.4% of the cumulative reductions needed to meet the state's 2030 goal, greater than the individual projected contributions of four other economic sectors, including those from the industrial and agricultural sectors. On an annual basis, the Ambitious scenario could result in reductions as high as 17.9 MMTCO2e⋅y-1 or 13.4% of the state's 2030 reduction goal. Most reductions come from changes in forest management (61% of 2050 projected cumulative reductions under the Ambitious scenario), followed by reforestation (14%), avoided conversion (11%), compost amendments to grasslands (9%), and wetland and grassland restoration (5%). Implementation of a range of land-based emissions reduction activities can materially contribute to one of the most ambitious mitigation targets globally. This study provides a flexible, dynamic framework for estimating the reductions achievable through land conservation, ecological restoration, and changes in management regimes.


Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales/métodos , Gases de Efecto Invernadero/antagonistas & inhibidores , Modelos Estadísticos , California , Clima , Conservación de los Recursos Naturales/legislación & jurisprudencia , Ecosistema , Bosques , Humanos , Humedales
3.
Glob Chang Biol ; 25(10): 3334-3353, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31066121

RESUMEN

Terrestrial ecosystems are an important sink for atmospheric carbon dioxide (CO2 ), sequestering ~30% of annual anthropogenic emissions and slowing the rise of atmospheric CO2 . However, the future direction and magnitude of the land sink is highly uncertain. We examined how historical and projected changes in climate, land use, and ecosystem disturbances affect the carbon balance of terrestrial ecosystems in California over the period 2001-2100. We modeled 32 unique scenarios, spanning 4 land use and 2 radiative forcing scenarios as simulated by four global climate models. Between 2001 and 2015, carbon storage in California's terrestrial ecosystems declined by -188.4 Tg C, with a mean annual flux ranging from a source of -89.8 Tg C/year to a sink of 60.1 Tg C/year. The large variability in the magnitude of the state's carbon source/sink was primarily attributable to interannual variability in weather and climate, which affected the rate of carbon uptake in vegetation and the rate of ecosystem respiration. Under nearly all future scenarios, carbon storage in terrestrial ecosystems was projected to decline, with an average loss of -9.4% (-432.3 Tg C) by the year 2100 from current stocks. However, uncertainty in the magnitude of carbon loss was high, with individual scenario projections ranging from -916.2 to 121.2 Tg C and was largely driven by differences in future climate conditions projected by climate models. Moving from a high to a low radiative forcing scenario reduced net ecosystem carbon loss by 21% and when combined with reductions in land-use change (i.e., moving from a high to a low land-use scenario), net carbon losses were reduced by 55% on average. However, reconciling large uncertainties associated with the effect of increasing atmospheric CO2 is needed to better constrain models used to establish baseline conditions from which ecosystem-based climate mitigation strategies can be evaluated.


Asunto(s)
Clima , Ecosistema , California , Dióxido de Carbono , Secuestro de Carbono
4.
Proc Natl Acad Sci U S A ; 111(48): E5224-32, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25422434

RESUMEN

Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.


Asunto(s)
Biomasa , Ecosistema , Bosques , Árboles/crecimiento & desarrollo , Algoritmos , Ciclo del Carbono , Conservación de los Recursos Naturales/métodos , Geografía , Modelos Teóricos , Perú , Densidad de Población , Dinámica Poblacional , Tecnología de Sensores Remotos/métodos , Reproducibilidad de los Resultados , Clima Tropical
5.
Glob Chang Biol ; 21(5): 2055-69, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25471795

RESUMEN

Recent studies indicate that lianas are increasing in size and abundance relative to trees in neotropical forests. As a result, forest dynamics and carbon balance may be altered through liana-induced suppression of tree growth and increases in tree mortality. Increasing atmospheric CO2 is hypothesized to be responsible for the increase in neotropical lianas, yet no study has directly compared the relative response of tropical lianas and trees to elevated CO2 . We explicitly tested whether tropical lianas had a larger response to elevated CO2 than co-occurring tropical trees and whether seasonal drought alters the response of either growth form. In two experiments conducted in central Panama, one spanning both wet and dry seasons and one restricted to the dry season, we grew liana (n = 12) and tree (n = 10) species in open-top growth chambers maintained at ambient or twice-ambient CO2 levels. Seedlings of eight individuals (four lianas, four trees) were grown in the ground in each chamber for at least 3 months during each season. We found that both liana and tree seedlings had a significant and positive response to elevated CO2 (in biomass, leaf area, leaf mass per area, and photosynthesis), but that the relative response to elevated CO2 for all variables was not significantly greater for lianas than trees regardless of the season. The lack of differences in the relative response between growth forms does not support the hypothesis that elevated CO2 is responsible for increasing liana size and abundance across the neotropics.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Árboles/crecimiento & desarrollo , Biomasa , Dióxido de Carbono/metabolismo , Funciones de Verosimilitud , Panamá , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Estaciones del Año , Especificidad de la Especie , Clima Tropical
6.
Sci Rep ; 13(1): 19008, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923761

RESUMEN

Natural climate solutions (NCS) are recognized as an important tool for governments to reduce greenhouse gas emissions and remove atmospheric carbon dioxide. Using California as a globally relevant reference, we evaluate the magnitude of biological climate mitigation potential from NCS starting in 2020 under four climate change scenarios. By mid-century NCS implementation leads to a large increase in net carbon stored, flipping the state from a net source to a net sink in two scenarios. Forest and conservation land management strategies make up 85% of all NCS emissions reductions by 2050, with agricultural strategies accounting for the remaining 15%. The most severe climate change impacts on ecosystem carbon materialize in the latter half of the century with three scenarios resulting in California ecosystems becoming a net source of carbon emissions under a baseline trajectory. However, NCS provide a strong attenuating effect, reducing land carbon emissions 41-54% by 2100 with total costs of deployment of 752-777 million USD annually through 2050. Rapid implementation of a portfolio of NCS interventions provides long-term investment in protecting ecosystem carbon in the face of climate change driven disturbances. This open-source, spatially-explicit framework can help evaluate risks to NCS carbon storage stability, implementation costs, and overall mitigation potential for NCS at jurisdictional scales.

7.
Carbon Balance Manag ; 17(1): 1, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35107646

RESUMEN

BACKGROUND: Quantifying the carbon balance of forested ecosystems has been the subject of intense study involving the development of numerous methodological approaches. Forest inventories, processes-based biogeochemical models, and inversion methods have all been used to estimate the contribution of U.S. forests to the global terrestrial carbon sink. However, estimates have ranged widely, largely based on the approach used, and no single system is appropriate for operational carbon quantification and forecasting. We present estimates obtained using a new spatially explicit modeling framework utilizing a "gain-loss" approach, by linking the LUCAS model of land-use and land-cover change with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). RESULTS: We estimated forest ecosystems in the conterminous United States stored 52.0 Pg C across all pools. Between 2001 and 2020, carbon storage increased by 2.4 Pg C at an annualized rate of 126 Tg C year-1. Our results broadly agree with other studies using a variety of other methods to estimate the forest carbon sink. Climate variability and change was the primary driver of annual variability in the size of the net carbon sink, while land-use and land-cover change and disturbance were the primary drivers of the magnitude, reducing annual sink strength by 39%. Projections of carbon change under climate scenarios for the western U.S. find diverging estimates of carbon balance depending on the scenario. Under a moderate emissions scenario we estimated a 38% increase in the net sink of carbon, while under a high emissions scenario we estimated a reversal from a net sink to net source. CONCLUSIONS: The new approach provides a fully coupled modeling framework capable of producing spatially explicit estimates of carbon stocks and fluxes under a range of historical and/or future socioeconomic, climate, and land management futures.

8.
Carbon Balance Manag ; 11(1): 9, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27335582

RESUMEN

BACKGROUND: Tropical forests provide a crucial carbon sink for a sizable portion of annual global CO2 emissions. Policies that incentivize tropical forest conservation by monetizing forest carbon ultimately depend on accurate estimates of national carbon stocks, which are often based on field inventory sampling. As an exercise to understand the limitations of field inventory sampling, we tested whether two common field-plot sampling approaches could accurately estimate carbon stocks across approximately 76 million ha of Perúvian forests. A 1-ha resolution LiDAR-based map of carbon stocks was used as a model of the country's carbon geography. RESULTS: Both field inventory sampling approaches worked well in estimating total national carbon stocks, almost always falling within 10 % of the model national total. However, the sampling approaches were unable to produce accurate spatially-explicit estimates of the carbon geography of Perú, with estimates falling within 10 % of the model carbon geography across no more than 44 % of the country. We did not find any associations between carbon stock errors from the field plot estimates and six different environmental variables. CONCLUSIONS: Field inventory plot sampling does not provide accurate carbon geography for a tropical country with wide ranging environmental gradients such as Perú. The lack of association between estimated carbon errors and environmental variables suggests field inventory sampling results from other nations would not differ from those reported here. Tropical forest nations should understand the risks associated with primarily field-based sampling approaches, and consider alternatives leading to more effective forest conservation and climate change mitigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA