Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Transl Med ; 16(757): eadk1731, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39047119

RESUMEN

Acute myeloid leukemia (AML) remains a challenging hematological malignancy with poor prognosis and limited treatment options. Leukemic stem cells (LSCs) contribute to therapeutic failure, relapse, and adverse outcome. This study investigates the role of quiescence and related molecular mechanisms in AML pathogenesis and LSC functions to identify potential therapeutic targets. Transcriptomic analysis revealed that the LSC-enriched quiescent cell population has a distinct gene signature with prognostic relevance in patients with AML. Mechanistically, quiescent blasts exhibit increased autophagic activity, which contributes to their sustained viability. Proteomic profiling uncovered differential requirements for iron metabolism between quiescent and cycling cells, revealing a unique dependence of quiescent cells on ferritinophagy, a selective form of autophagy mediated by nuclear receptor coactivator 4 (NCOA4), which regulates iron bioavailability. We evaluated the therapeutic potential of inhibiting NCOA4-mediated ferritinophagy using genetic knockdown and chemical inhibition approaches. In vitro assays showed that suppression of NCOA4 was toxic to leukemic blasts, particularly the CD34+CD38- LSC-enriched population, without affecting normal CD34+ hematopoietic progenitors. In vivo studies using murine patient-derived xenograft (PDX) models of AML confirmed that NCOA4 inhibition reduced tumor burden and impaired LSC viability and self-renewal, indicating a specific vulnerability of these cells to ferritinophagy disruption. Our findings underscore the role of NCOA4-mediated ferritinophagy in maintaining LSC quiescence and function and suggest that targeting this pathway may be an effective therapeutic strategy for AML. This study highlights the potential of NCOA4 inhibition to improve AML outcomes and paves the way for future research and clinical development.


Asunto(s)
Autofagia , Ferritinas , Leucemia Mieloide Aguda , Células Madre Neoplásicas , Coactivadores de Receptor Nuclear , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Humanos , Animales , Ferritinas/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Ratones , Línea Celular Tumoral , Hierro/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Blood ; 105(6): 2527-34, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15550488

RESUMEN

The mammalian target of rapamycin (mTOR) is a key regulator of growth and survival in many cell types. Its constitutive activation has been involved in the pathogenesis of various cancers. In this study, we show that mTOR inhibition by rapamycin strongly inhibits the growth of the most immature acute myeloid leukemia (AML) cell lines through blockade in G0/G1 phase of the cell cycle. Accordingly, 2 downstream effectors of mTOR, 4E-BP1 and p70S6K, are phosphorylated in a rapamycin-sensitive manner in a series of 23 AML cases. Interestingly, the mTOR inhibitor markedly impairs the clonogenic properties of fresh AML cells while sparing normal hematopoietic progenitors. Moreover, rapamycin induces significant clinical responses in 4 of 9 patients with either refractory/relapsed de novo AML or secondary AML. Overall, our data strongly suggest that mTOR is aberrantly regulated in most AML cells and that rapamycin and analogs, by targeting the clonogenic compartment of the leukemic clone, may be used as new compounds in AML therapy.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Fase G1/efectos de los fármacos , Leucemia Mieloide Aguda/metabolismo , Proteínas Quinasas/metabolismo , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Sirolimus/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adolescente , Adulto , Anciano , Proteínas de Ciclo Celular , Femenino , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Recurrencia , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR , Células Tumorales Cultivadas
3.
Blood ; 104(10): 3117-25, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15265786

RESUMEN

The actin cytoskeleton plays a major role in platelet function. In contrast, its precise role in the function of megakaryocytes (MKs) is less understood but may be important for a chemoattractive response and an efficient proplatelet formation. In the marrow microenvironment, mature MKs are in contact with the extracellular matrix, including fibrillar collagen type I. MKs express alpha2beta1 integrin and the immunoglobulin superfamily member glycoprotein VI (GPVI), the main receptors for collagen. Using function-blocking antibodies or specific ligands, we investigated in primary human MKs how alpha2beta1 integrin and GPVI regulate stress fiber formation, the primary actin structures needed for cell contraction. Stress fiber assembly requires synergistic activation of the MAPK/Erk1/2 pathway and the small guanosine triphosphatase Rho via its effector, Rho-associated coiled-coil kinase (ROCK). alpha2beta1 integrin is crucial for stress fiber formation, whereas GPVI triggers rapid and sustained activation of the Erk1/2 pathway. Strikingly, after a longer adhesion time, proplatelet formation was significantly inhibited by the engagement of alpha2beta1 integrin, not by GPVI, likely through the Rho/ROCK pathway. Thus, proplatelet formation in human MKs could be tightly regulated by differential interactions with their collagen receptors. We propose that this interaction with collagen prevents proplatelet formation within the marrow.


Asunto(s)
Plaquetas/metabolismo , Integrina alfa2beta1/metabolismo , Megacariocitos/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Fibras de Estrés/metabolismo , Plaquetas/citología , Colágeno Tipo I/metabolismo , Adhesiones Focales/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ligandos , Sistema de Señalización de MAP Quinasas/fisiología , Megacariocitos/citología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas Asociadas a rho
4.
Blood ; 101(4): 1543-50, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12406911

RESUMEN

In light of the emerging concept of a protective function of the mitogen-activated protein kinase (MAPK) pathway under stress conditions, we investigated the influence of the anthracycline daunorubicin (DNR) on MAPK signaling and its possible contribution to DNR-induced cytotoxicity. We show that DNR increased phosphorylation of extracellular-regulated kinases (ERKs) and stimulated activities of both Raf-1 and extracellular-regulated kinase 1 (ERK1) within 10 to 30 minutes in U937 cells. ERK1 stimulation was completely blocked by either the mitogen-induced extracellular kinase (MEK) inhibitor PD98059 or the Raf-1 inhibitor 8-bromo-cAMP (cyclic adenosine monophosphate). However, only partial inhibition of Raf-1 and ERK1 stimulation was observed with the antioxidant N-acetylcysteine (N-Ac). Moreover, the xanthogenate compound D609 that inhibits DNR-induced phosphatidylcholine (PC) hydrolysis and subsequent diacylglycerol (DAG) production, as well as wortmannin that blocks phosphoinositide-3 kinase (PI3K) stimulation, only partially inhibited Raf-1 and ERK1 stimulation. We also observed that DNR stimulated protein kinase C zeta (PKCzeta), an atypical PKC isoform, and that both D609 and wortmannin significantly inhibited DNR-triggered PKCzeta activation. Finally, we found that the expression of PKCzeta kinase-defective mutant resulted in the abrogation of DNR-induced ERK phosphorylation. Altogether, these results demonstrate that DNR activates the classical Raf-1/MEK/ERK pathway and that Raf-1 activation is mediated through complex signaling pathways that involve at least 2 contributors: PC-derived DAG and PI3K products that converge toward PKCzeta. Moreover, we show that both Raf-1 and MEK inhibitors, as well as PKCzeta inhibition, sensitized cells to DNR-induced cytotoxicity.


Asunto(s)
Daunorrubicina/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Acetilcisteína/farmacología , Androstadienos/farmacología , Antibióticos Antineoplásicos/farmacología , Antioxidantes/farmacología , Hidrocarburos Aromáticos con Puentes/farmacología , Muerte Celular/efectos de los fármacos , Diglicéridos/biosíntesis , Activación Enzimática/efectos de los fármacos , Flavonoides/farmacología , Humanos , Leucemia , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Norbornanos , Fosfatidilcolinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteína Quinasa C/genética , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Especies Reactivas de Oxígeno/farmacología , Tiocarbamatos , Tionas/farmacología , Transfección , Células Tumorales Cultivadas , Wortmanina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA