Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Opt Express ; 31(12): 19255-19265, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381344

RESUMEN

Artificial neural networks (ANN) are a groundbreaking technology massively employed in a plethora of fields. Currently, ANNs are mostly implemented through electronic digital computers, but analog photonic implementations are very interesting mainly because of low power consumption and high bandwidth. We recently demonstrated a photonic neuromorphic computing system based on frequency multiplexing that executes ANNs algorithms as reservoir computing and Extreme Learning Machines. Neuron signals are encoded in the amplitude of the lines of a frequency comb, and neuron interconnections are realized through frequency-domain interference. Here we present an integrated programmable spectral filter designed to manipulate the optical frequency comb in our frequency multiplexing neuromorphic computing platform. The programmable filter controls the attenuation of 16 independent wavelength channels with a 20 GHz spacing. We discuss the design and the results of the chip characterization, and we preliminary demonstrate, through a numerical simulation, that the produced chip is suitable for the envisioned neuromorphic computing application.

2.
Opt Lett ; 47(4): 782-785, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167524

RESUMEN

Reservoir computing is a brain-inspired approach for information processing, well suited to analog implementations. We report a photonic implementation of a reservoir computer that exploits frequency domain multiplexing to encode neuron states. The system processes 25 comb lines simultaneously (i.e., 25 neurons), at a rate of 20 MHz. We illustrate performances on two standard benchmark tasks: channel equalization and time series forecasting. We also demonstrate that frequency multiplexing allows output weights to be implemented in the optical domain, through optical attenuation. We discuss the perspectives for high-speed, high-performance, low-footprint implementations.


Asunto(s)
Redes Neurales de la Computación , Óptica y Fotónica , Computadores , Neuronas , Fotones
3.
Opt Express ; 29(18): 28257-28276, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34614961

RESUMEN

The optical domain is a promising field for the physical implementation of neural networks, due to the speed and parallelism of optics. Extreme learning machines (ELMs) are feed-forward neural networks in which only output weights are trained, while internal connections are randomly selected and left untrained. Here we report on a photonic ELM based on a frequency-multiplexed fiber setup. Multiplication by output weights can be performed either offline on a computer or optically by a programmable spectral filter. We present both numerical simulations and experimental results on classification tasks and a nonlinear channel equalization task.

4.
Opt Lett ; 46(12): 2832-2835, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34129552

RESUMEN

We propose a new, to the best of our knowledge, single photon source based on the principle of active multiplexing of heralded single photons, which, unlike previously reported architecture, requires a limited amount of physical resources. We discuss both its feasibility and the purity and indistinguishability of single photons as a function of the key parameters of a possible implementation.

5.
Entropy (Basel) ; 23(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34441095

RESUMEN

We present a method to improve the performance of a reservoir computer by keeping the reservoir fixed and increasing the number of output neurons. The additional neurons are nonlinear functions, typically chosen randomly, of the reservoir neurons. We demonstrate the interest of this expanded output layer on an experimental opto-electronic system subject to slow parameter drift which results in loss of performance. We can partially recover the lost performance by using the output layer expansion. The proposed scheme allows for a trade-off between performance gains and system complexity.

6.
Opt Lett ; 41(14): 3281-4, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27420515

RESUMEN

By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third-order nonlinear response of graphene and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, n2=-1.1×10-13 m2/W. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature and to discuss the discrepancies, taking into account parameters such as doping.

7.
Phys Rev Lett ; 117(12): 128301, 2016 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-27689299

RESUMEN

Delay-coupled electro-optical systems have received much attention for their dynamical properties and their potential use in signal processing. In particular, it has recently been demonstrated, using the artificial intelligence algorithm known as reservoir computing, that photonic implementations of such systems solve complex tasks such as speech recognition. Here, we show how the backpropagation algorithm can be physically implemented on the same electro-optical delay-coupled architecture used for computation with only minor changes to the original design. We find that, compared to when the backpropagation algorithm is not used, the error rate of the resulting computing device, evaluated on three benchmark tasks, decreases considerably. This demonstrates that electro-optical analog computers can embody a large part of their own training process, allowing them to be applied to new, more difficult tasks.

8.
Opt Express ; 22(9): 10868-81, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24921786

RESUMEN

Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

9.
Opt Express ; 22(3): 3089-97, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663599

RESUMEN

We report supercontinuum (SC) generation centered on the telecommunication C-band (1550 nm) in CMOS compatible hydrogenated amorphous silicon waveguides. A broadening of more than 550 nm is obtained in 1cm long waveguides of different widths using as pump picosecond pulses with on chip peak power as low as 4 W.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38776210

RESUMEN

Speech recognition is a critical task in the field of artificial intelligence (AI) and has witnessed remarkable advancements thanks to large and complex neural networks, whose training process typically requires massive amounts of labeled data and computationally intensive operations. An alternative paradigm, reservoir computing (RC), is energy efficient and is well adapted to implementation in physical substrates, but exhibits limitations in performance when compared with more resource-intensive machine learning algorithms. In this work, we address this challenge by investigating different architectures of interconnected reservoirs, all falling under the umbrella of deep RC (DRC). We propose a photonic-based deep reservoir computer and evaluate its effectiveness on different speech recognition tasks. We show specific design choices that aim to simplify the practical implementation of a reservoir computer while simultaneously achieving high-speed processing of high-dimensional audio signals. Overall, with the present work, we hope to help the advancement of low-power and high-performance neuromorphic hardware.

11.
Opt Lett ; 38(11): 1960-2, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23722803

RESUMEN

We report the experimental generation of polarization-entangled photons at telecommunication wavelengths using spontaneous four-wave mixing in silicon-on-insulator wire waveguides. The key component is a 2D coupler that transforms path entanglement into polarization entanglement at the output of the device. Using quantum state tomography we find that the produced state has fidelity 88% with a pure nonmaximally entangled state. The produced state violates the CHSH Bell inequality by S=2.37 ± 0.19.

12.
Neural Netw ; 165: 662-675, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37364475

RESUMEN

The recognition of human actions in videos is one of the most active research fields in computer vision. The canonical approach consists in a more or less complex preprocessing stages of the raw video data, followed by a relatively simple classification algorithm. Here we address recognition of human actions using the reservoir computing algorithm, which allows us to focus on the classifier stage. We introduce a new training method for the reservoir computer, based on "Timesteps Of Interest", which combines in a simple way short and long time scales. We study the performance of this algorithm using both numerical simulations and a photonic implementation based on a single non-linear node and a delay line on the well known KTH dataset. We solve the task with high accuracy and speed, to the point of allowing for processing multiple video streams in real time. The present work is thus an important step towards developing efficient dedicated hardware for video processing.


Asunto(s)
Algoritmos , Reconocimiento de Normas Patrones Automatizadas , Humanos , Reconocimiento de Normas Patrones Automatizadas/métodos , Fotones , Computadores
13.
Opt Express ; 20(20): 22783-95, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23037429

RESUMEN

Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.


Asunto(s)
Metodologías Computacionales , Dispositivos Ópticos , Semiconductores , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo
14.
Opt Lett ; 37(11): 1856-8, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22660052

RESUMEN

Under strong laser illumination, few-layer graphene exhibits both a transmittance increase due to saturable absorption and a nonlinear phase shift. Here, we unambiguously distinguish these two nonlinear optical effects and identify both real and imaginary parts of the complex nonlinear refractive index of graphene. We show that graphene possesses a giant nonlinear refractive index n(2)≃10(-7) cm(2) W(-1), almost 9 orders of magnitude larger than bulk dielectrics. We find that the nonlinear refractive index decreases with increasing excitation flux but slower than the absorption. This suggests that graphene may be a very promising nonlinear medium, paving the way for graphene-based nonlinear photonics.

15.
Phys Rev Lett ; 108(10): 100402, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22463395

RESUMEN

The outcomes obtained in Bell tests involving two-outcome measurements on two subsystems can, in principle, generate up to 2 bits of randomness. However, the maximal violation of the Clauser-Horne-Shimony-Holt inequality guarantees the generation of only 1.23 bits of randomness. We prove here that quantum correlations with arbitrarily little nonlocality and states with arbitrarily little entanglement can be used to certify that close to the maximum of 2 bits of randomness are produced. Our results show that nonlocality, entanglement, and randomness are inequivalent quantities. They also imply that device-independent quantum key distribution with an optimal key generation rate is possible by using almost-local correlations and that device-independent randomness generation with an optimal rate is possible with almost-local correlations and with almost-unentangled states.

16.
Opt Lett ; 36(4): 552-4, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21326453

RESUMEN

We present what we believe to be the first study of parametric amplification in hydrogenated amorphous silicon waveguides. Broadband on/off amplification up to 26.5 dB at telecom wavelength is reported. Measured nonlinear parameter is 770 W(-) m(-1), nonlinear absorption 28 W(-1) m(-1), bandgap 1.61 eV.

17.
J Theor Biol ; 261(4): 531-9, 2009 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-19761777

RESUMEN

The issues we attempt to tackle here are what the first peptides did look like when they emerged on the primitive earth, and what simple catalytic activities they fulfilled. We conjecture that the early functional peptides were short (3-8 amino acids long), were made of those amino acids, Gly, Ala, Val and Asp, that are abundantly produced in many prebiotic synthesis experiments and observed in meteorites, and that the neutralization of Asp's negative charge is achieved by metal ions. We further assume that some traces of these prebiotic peptides still exist, in the form of active sites in present-day proteins. Searching these proteins for prebiotic peptide candidates led us to identify three main classes of motifs, bound mainly to Mg(2+) ions: D(F/Y)DGD corresponding to the active site in RNA polymerases, DGD(G/A)D present in some kinds of mutases, and DAKVGDGD in dihydroxyacetone kinase. All three motifs contain a DGD submotif, which is suggested to be the common ancestor of all active peptides. Moreover, all three manipulate phosphate groups, which was probably a very important biological function in the very first stages of life. The statistical significance of our results is supported by the frequency of these motifs in today's proteins, which is three times higher than expected by chance, with a P-value of 3 x 10(-2). The implications of our findings in the context of the appearance of life and the possibility of an experimental validation are discussed.


Asunto(s)
Evolución Química , Modelos Biológicos , Origen de la Vida , Péptidos/química , Prebióticos , Aminoácidos/química , Modelos Moleculares , Estudios de Validación como Asunto
18.
Phys Rev E ; 98(1-1): 012215, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30110744

RESUMEN

Using the machine learning approach known as reservoir computing, it is possible to train one dynamical system to emulate another. We show that such trained reservoir computers reproduce the properties of the attractor of the chaotic system sufficiently well to exhibit chaos synchronization. That is, the trained reservoir computer, weakly driven by the chaotic system, will synchronize with the chaotic system. Conversely, the chaotic system, weakly driven by a trained reservoir computer, will synchronize with the reservoir computer. We illustrate this behavior on the Mackey-Glass and Lorenz systems. We then show that trained reservoir computers can be used to crack chaos based cryptography and illustrate this on a chaos cryptosystem based on the Mackey-Glass system. We conclude by discussing why reservoir computers are so good at emulating chaotic systems.

19.
Opt Express ; 15(8): 4419-26, 2007 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-19532689

RESUMEN

We present observations of quasi-phase matched parametric fluorescence in a periodically poled twin-hole silica fiber. The phase matching condition in the fiber enables the generation of a degenerate signal field in the fiber-optic communication band centered on 1556 nm. We performed coincidence measurements and a Hong-Ou-Mandel experiment to validate that the signal arises from photon pairs. A coincidence peak with a signal to noise ratio (SNR) of 4 using 43 mW of pump power and a Hong-Ou-Mandel dip showing 40% net visibility were measured. Moreover, the experiments were performed with standard single mode fibers spliced at both ends of the poled section, which makes this source easy to integrate in fiber-optic quantum communication applications.

20.
IEEE Trans Neural Netw Learn Syst ; 28(11): 2686-2698, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28113606

RESUMEN

Reservoir computing is a bioinspired computing paradigm for processing time-dependent signals. The performance of its analog implementation is comparable to other state-of-the-art algorithms for tasks such as speech recognition or chaotic time series prediction, but these are often constrained by the offline training methods commonly employed. Here, we investigated the online learning approach by training an optoelectronic reservoir computer using a simple gradient descent algorithm, programmed on a field-programmable gate array chip. Our system was applied to wireless communications, a quickly growing domain with an increasing demand for fast analog devices to equalize the nonlinear distorted channels. We report error rates up to two orders of magnitude lower than previous implementations on this task. We show that our system is particularly well suited for realistic channel equalization by testing it on a drifting and a switching channel and obtaining good performances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA