Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Trends Biochem Sci ; 26(2): 131-6, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11166572

RESUMEN

A double-strand break in genomic DNA that remains unrepaired can be lethal for a cell. Indeed, the integrity of the genome is paramount for survival. It is therefore surprising that some cells deliberately introduce double-strand breaks at certain times during their life cycle. Why might they do this? What are the benefits? How are these breaks repaired? The answers to these questions lie in understanding the basis of meiotic recombination, the process that leads to genetic variation. This review summarizes the key roles played by the two recombinases, Dmc1 and Rad51, in the faithful repair of DNA breaks.


Asunto(s)
Proteínas de Ciclo Celular , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/química , Animales , ADN/ultraestructura , Escherichia coli/enzimología , Humanos , Meiosis , Modelos Genéticos , Recombinasa Rad51 , Recombinación Genética
2.
Mol Cell Biol ; 16(5): 2091-100, 1996 May.
Artículo en Inglés | MEDLINE | ID: mdl-8628275

RESUMEN

Bleomycin belongs to a class of antitumor drugs that damage cellular DNA through the production of free radicals. The molecular basis by which eukaryotic cells provide resistance to the lethal effects of bleomycin is not clear. Using the yeast Saccharomyces cerevisiae as a model with which to study the effect of bleomycin damage on cellular DNA, we isolated several mutants that display hypersensitivity to bleomycin. A DNA clone containing the IMP2 gene that complemented the most sensitive bleomycin mutant was identified. A role for IMP2 in defense against the toxic effects of bleomycin has not been previously reported. imp2 null mutants were constructed and were found to be 15-fold more sensitive to bleomycin than wild-type strains. The imp2 null mutants were also hypersensitive to several oxidants but displayed parental resistance to UV light and methyl methane sulfonate. Exposure of mutants to either bleomycin or hydrogen peroxide resulted in the accumulation of strand breaks in the chromosomal DNA, which remained even after 6 h postchallenge, but not in the wild type. These results suggest that the oxidant hypersensitivity of the imp2 mutant results from a defect in the repair of oxidative DNA lesions. Molecular analysis of IMP2 indicates that it encodes a transcriptional activator that can activate a reporter gene via an acidic domain located at the N terminus. Imp2 lacks a DNA binding motif, but it possesses a C-terminal leucine-rich repeat. With these data taken together, we propose that Imp2 prevents oxidative damage by regulating the expression of genes that are directly required to repair DNA damage.


Asunto(s)
Bleomicina/farmacología , Daño del ADN , Endopeptidasas/biosíntesis , Genes Fúngicos , Oxidantes/farmacología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas , Transactivadores/biosíntesis , Proteínas Bacterianas/biosíntesis , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Endopeptidasas/genética , Endopeptidasas/metabolismo , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Genotipo , Cinética , Proteínas Mitocondriales , Datos de Secuencia Molecular , Proteínas Nucleares , Oligodesoxirribonucleótidos , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos
3.
Biochim Biophys Acta ; 1396(1): 15-20, 1998 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-9524207

RESUMEN

The Apn1 protein of the budding yeast Saccharomyces cerevisiae is a DNA repair enzyme that hydrolyzes apurinic/apyrimidinic (AP) sites and removes 3'-blocking groups present at single strand breaks of damaged DNA. Yeast cells lacking Apn1 are hypersensitive to DNA damaging agents that produce AP sites and DNA strand breaks with blocked 3'-termini. In this study, we showed that the fission yeast Schizosaccharomyces pombe bears a homologue, Spapn1, that is 45% identical to S. cerevisiae Apn1. However, the Spapn1 gene is apparently not expressed. Active expression of S. cerevisiae Apn1 in S. pombe conferred no additional resistance to DNA damaging agents. These data suggest that the pathway by which S. pombe repairs AP sites is independent of a functional Apn1-like AP endonuclease.


Asunto(s)
Liasas de Carbono-Oxígeno/genética , Reparación del ADN , Endodesoxirribonucleasas/genética , Proteínas de Escherichia coli , Familia de Multigenes , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Clonación Molecular , Enzimas Reparadoras del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Desoxirribonucleasa IV (Fago T4-Inducido) , Escherichia coli/genética , Datos de Secuencia Molecular , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimología
4.
J Mol Biol ; 304(2): 151-64, 2000 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-11080452

RESUMEN

The human Rad51 recombinase is essential for the repair of double-strand breaks in DNA that occur in somatic cells after exposure to ionising irradiation, or in germ line cells undergoing meiotic recombination. The initiation of double-strand break repair is thought to involve resection of the double-strand break to produce 3'-ended single-stranded (ss) tails that invade homologous duplex DNA. Here, we have used purified proteins to set up a defined in vitro system for the initial strand invasion step of double-strand break repair. We show that (i) hRad51 binds to the ssDNA of tailed duplex DNA molecules, and (ii) hRad51 catalyses the invasion of tailed duplex DNA into homologous covalently closed DNA. Invasion is stimulated by the single-strand DNA binding protein RPA, and by the hRad52 protein. Strikingly, hRad51 forms terminal nucleoprotein filaments on either 3' or 5'-ssDNA tails and promotes strand invasion without regard for the polarity of the tail. Taken together, these results show that hRad51 is recruited to regions of ssDNA occurring at resected double-strand breaks, and that hRad51 shows no intrinsic polarity preference at the strand invasion step that initiates double-strand break repair.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN/genética , ADN/metabolismo , ADN/química , ADN/ultraestructura , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , ADN Superhelicoidal/química , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , ADN Superhelicoidal/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Humanos , Microscopía Electrónica , Modelos Genéticos , Conformación de Ácido Nucleico , Unión Proteica , Recombinasa Rad51 , Rec A Recombinasas/metabolismo , Recombinación Genética/genética , Proteína de Replicación A , Homología de Secuencia de Ácido Nucleico
5.
Genetics ; 149(2): 893-901, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9611200

RESUMEN

Yeast cells deficient in the transcriptional activator Imp2p are viable, but display marked hypersensitivity to a variety of oxidative agents. We now report that imp2 null mutants are also extremely sensitive to elevated levels of the monovalent ions, Na+ and Li+, as well as to the divalent ions Ca2+, Mn2+, Zn2+, and Cu2+, but not to Cd2+, Mg2+, Co2+, Ni2+, and Fe2+, as compared to the parent strain. We next searched for multicopy suppressor genes that would allow the imp2Delta mutant to grow under high salt conditions. Two genes that independently restored normal salt-resistance to the imp2Delta mutant, ENA1 and HAL3, were isolated. ENA1 encodes a P-type ion pump involved in monovalent ion efflux from the cell, while HAL3 encodes a protein required for activating the expression of Ena1p. Neither ENA1 nor HAL3 gene expression was positively regulated by Imp2p. Moreover, the imp2 ena1 double mutant was exquisitely sensitive to Na+/Li+ cations, as compared to either single mutant, implying that Imp2p mediates Na+/Li+ cation homeostasis independently of Ena1p.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Ciclo Celular , Proteínas Fúngicas/fisiología , Homeostasis , Proteínas Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transactivadores/fisiología , Adenosina Trifosfatasas/biosíntesis , Adenosina Trifosfatasas/genética , Bleomicina/farmacología , Cationes Bivalentes , Cobre/farmacología , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Dosificación de Gen , Genes Supresores , Homeostasis/genética , Transporte Iónico/genética , Cloruro de Litio/farmacología , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Mutación , Proteínas Nucleares/genética , Cloruro de Sodio/farmacología , ATPasa Intercambiadora de Sodio-Potasio , Transactivadores/genética
6.
Gene ; 140(1): 103-7, 1994 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-8125325

RESUMEN

A 1.6-kb DNA fragment from the soil actinomycete, Streptomyces sp. strain N174, containing the gene (csn) encoding an extracellular chitosanase (CSN), has been isolated and its complete nucleotide sequence determined. The gene was expressed in Escherichia coli and Streptomyces lividans using appropriate vectors. The sequence was found to contain one large ORF which encodes a protein of 238 amino acids (aa). The deduced aa sequence begins with a signal peptide which has an unusual C-terminal segment, well recognized by the Streptomyces secretion system, but poorly in Escherichia coli. The strain N174 CSN aa sequence was compared with those of other proteins and significant homology was found only with the Bacillus circulans MH-K1 CSN but not with known chitinases or lysozymes. This suggests that CSN form a new enzyme family distinct from other endoglycosidases.


Asunto(s)
Glicósido Hidrolasas/genética , Streptomyces/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , ADN Bacteriano , Escherichia coli/genética , Datos de Secuencia Molecular , Mapeo Restrictivo , Homología de Secuencia de Aminoácido
7.
Gene ; 179(2): 291-3, 1996 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-8972914

RESUMEN

The Saccharomyces cerevisiae APN1 gene, encoding the bifunctional DNA repair enzyme apurinic/apyrimidinic (AP) endonuclease/3'-repair diesterase, was used as a probe to isolate a gene homolog, CeAPN1, from a Caenorhabditis elegans cDNA library. The CeAPN1 gene is predicted to encode a protein 30 kDa in size, which shares 40.4% and 44.9% identity at the amino acid level with, respectively, S. cerevisiae Apn1 and Escherichia coli endonuclease IV. We suggest that CeApn1 protein is a member of the endonuclease IV family of DNA repair enzymes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Proteínas de Escherichia coli , Proteínas del Helminto/genética , Liasas/genética , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/enzimología , Enzimas Reparadoras del ADN , ADN de Helmintos , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Desoxirribonucleasa IV (Fago T4-Inducido) , Endodesoxirribonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Genes de Helminto , Datos de Secuencia Molecular , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
8.
Gene ; 170(1): 153-4, 1996 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-8621081

RESUMEN

The Qm family of proteins, which are found in a wide variety of species such as budding yeast, plants and humans, are believed to play a role in gene expression. Here, we report the isolation ofaa gene, spqM, from the fission yeast Schizosaccharomyces pombe, whose deduced amino-acid sequence shared 71.6 to 61.36% identity with members of the Qm family. The high degree of conservation of the Qm members suggest that they were selectively conserved, because of an important biological role.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas Ribosómicas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Transcripción Genética
9.
DNA Cell Biol ; 13(11): 1071-85, 1994 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-7702751

RESUMEN

It has been suggested that expression of the genes encoding the alpha 4/beta 1 integrin increases during wound healing of the cornea. As a first step in understanding the mechanisms required to stimulate alpha 4 gene expression during this process, we defined the minimal upstream sequence required to direct basal promoter activity for this gene. Using deletion analyses of the alpha 4 gene upstream sequence, we identified two functionally important negative regulatory elements. Dimethylsulfate (DMS) methylation interference assays provided evidence for the binding of a single nuclear protein to tandemly repeated homologous cis-acting elements (designated alpha 4.1 and alpha 4.2) from the alpha 4 basal promoter that share the core sequence 5'-GTGGGT-3'. The formation of a protection only at alpha 4.1 in DNase I footprinting suggested that it is the primary target element for the binding of nuclear proteins. Three distinct nuclear proteins bound a double-stranded oligonucleotide bearing the DNA sequence of alpha 4.1 to produce specific DNA-protein complexes (R1 to R3) in gel-shift assays, from which that producing R3 was identified as the protein yielding DNase I protection at alpha 4.1. Detailed mutational analysis of alpha 4.1 and alpha 4.2 indicated that both elements positively regulate gene expression in primary cultures of corneal epithelial cells and Jurkat tissue culture cells, which is consistent with the deletion analysis. However, when transiently transfected into pituitary GH4C1, the alpha 4.2 mutants yielded increased chloramphenicol acetyl transferase activity therefore demonstrating that these elements have the ability to function either as positive or negative regulators of gene transcription in a manner that is dependent on the type of cell transfected.


Asunto(s)
Expresión Génica , Integrinas/biosíntesis , Integrinas/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular , Cloranfenicol O-Acetiltransferasa/biosíntesis , Córnea/metabolismo , Lesiones de la Cornea , ADN de Neoplasias/metabolismo , Células HeLa , Humanos , Integrina alfa4 , Integrina alfa4beta1 , Metilación , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos , Neoplasias Hipofisarias , Ratas , Receptores Mensajeros de Linfocitos/genética , Proteínas Recombinantes/biosíntesis , Ésteres del Ácido Sulfúrico/farmacología , Transcripción Genética , Transfección , Células Tumorales Cultivadas , Cicatrización de Heridas
10.
Mol Cell Biochem ; 158(1): 65-75, 1996 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-8791286

RESUMEN

The budding yeast Saccharomyces cerevisiae plays a central role in contributing to the understanding of one of the most important biological process, DNA repair, that maintains genuine copies of the cellular chromosomes. DNA lesions produce either spontaneously or by DNA damaging agents are efficiently repaired by one or more DNA repair proteins. While some DNA repair proteins function independently as in the case of base excision repair, others belong into three separate DNA repair pathways, nucleotide excision, mismatch, and recombinational. Of these pathways, nucleotide excision and mismatch repair show the greatest functional conservation between yeast and human cells. Because of this high degree of conservation, yeast has been regarded as one of the best model system to study DNA repair. This report therefore updates current knowledge of the major yeast DNA repair processes.


Asunto(s)
Reparación del ADN , Saccharomyces cerevisiae/genética , Daño del ADN , ADN de Hongos/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Mutación , Recombinación Genética , Transcripción Genética
11.
Mol Microbiol ; 24(4): 711-21, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9194699

RESUMEN

Escherichia coli exonuclease III and endonuclease III are two distinct DNA-repair enzymes that can cleave apurinic/apyrimidinic (AP) sites by different mechanisms. While the AP endonuclease activity of exonuclease III generates a 3'-hydroxyl group at AP sites, the AP lyase activity of endonuclease III produces a 3'-alpha,beta unsaturated aldehyde that prevents DNA-repair synthesis. Saccharomyces cerevisiae Apn1 is the major AP endonuclease/3'-diesterase that also produces a 3'-hydroxyl group at the AP site, but it is unrelated to either exonuclease III or endonuclease III. apn1 deletion mutants are unable to repair AP sites generated by the alkylating agent methyl methane sulphonate and display a spontaneous mutator phenotype. This work shows that either exonuclease III or endonuclease III can functionally replace yeast Apn1 in the repair of AP sites. Two conclusions can be derived from these findings. The first of these conclusions is that yeast cells can complete the repair of AP sites even though they are cleaved by AP lyase. This implies that AP lyase can contribute significantly to the repair of AP sites and that yeast cells have the ability to process the alpha,beta unsaturated aldehyde produced by endonuclease III. The second of these conclusions is that unrepaired AP sites are strictly the cause of the high spontaneous mutation rate in the apn1 deletion mutant.


Asunto(s)
Ácido Apurínico/genética , Reparación del ADN , Desoxirribonucleasa (Dímero de Pirimidina) , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Enzimas Reparadoras del ADN , Endodesoxirribonucleasas/genética , Escherichia coli/enzimología , Prueba de Complementación Genética , Metilmetanosulfonato , Mutagénesis , Saccharomyces cerevisiae/enzimología
12.
Can J Microbiol ; 42(8): 835-43, 1996 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8776853

RESUMEN

The antitumor drug bleomycin can produce a variety of lesions in the cellular DNA by a free radical dependent mechanism. To understand how these DNA lesions are repaired, bleomycin-hypersensitive mutants were isolated from the yeast Saccharomyces cerevisiae. We report here the analysis of one mutant, DRY25, that showed extreme sensitivity to bleomycin. This mutant also exhibited hypersensitivity to hydrogen peroxide and t-butyl hydroperoxide, but showed no sensitivity to other DNA-damaging agents, including gamma-rays, ultraviolet light, and methyl methanesulfonate. Subsequent analysis revealed that strain DRY25 was severely deficient in the repair of bleomycin-induced DNA lesions. Under normal growth conditions, DRY25 displayed a 3-fold increase in the frequency of chromosomal translocation that was further stimulated by 5- to 15-fold when the cells were treated with either bleomycin or hydrogen peroxide, but not by methyl methanesulfonate, as compared with the wild type. Genetic analysis indicated that the mutant defect was independent of the nucleotide excision, postreplication, or recombinational DNA-repair pathways. These data suggest that one conceivable defect of DRY25 is that it lacks a protein that protects the cell against oxidative damage to DNA. A clone that fully complemented DRY25 defect was isolated and the possible roles of the complementing gene are discussed.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Bleomicina/farmacología , Mutación , Saccharomyces cerevisiae/genética , Cruzamientos Genéticos , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Farmacorresistencia Microbiana/genética , Proteínas Fúngicas/genética , Prueba de Complementación Genética , Ligasas/genética , Pruebas de Sensibilidad Microbiana , Fenotipo , Proteína Recombinante y Reparadora de ADN Rad52 , Proteínas de Saccharomyces cerevisiae , Translocación Genética , Enzimas Ubiquitina-Conjugadoras
13.
Can J Microbiol ; 42(12): 1263-6, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8989864

RESUMEN

The antibiotic bleomycin is used as an anticancer agent for treating a variety of tumours. The antitumour effect of bleomycin is related to its ability to produce lesions such as apurinic/apyrimidinic sites and single- and double-strand breaks in the cellular DNA. Phleomycin is a structurally related form of bleomycin, but it is not used as an anticancer agent. While phleomycin can also damage DNA, neither the exact nature of these DNA lesions nor the cellular process that repairs phleomycin-induced DNA lesions is known. As a first step to understand how eukaryotic cells provide resistance to phleomycin, we used the yeast Saccharomyces cerevisiae as a model system. Several phleomycin-sensitive mutants were generated following gamma-radiation treatment and among these mutants, ph140 was found to be the most sensitive to phleomycin. Molecular analysis revealed that the mutant ph140 harbored a mutation in the DNA repair gene RAD6. Moreover, a functional copy of the RAD6 gene restored full phleomycin resistance to strain ph140. Our findings indicate that the RAD6 protein is essential for yeast cellular resistance to phleomycin.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Reparación del ADN/genética , Genes Fúngicos , Ligasas/genética , Fleomicinas/farmacología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , 4-Nitroquinolina-1-Óxido/farmacología , Bleomicina/farmacología , Relación Dosis-Respuesta a Droga , Farmacorresistencia Microbiana/genética , Metilmetanosulfonato/farmacología , Mutación , Mapeo Restrictivo , Saccharomyces cerevisiae/efectos de los fármacos , Enzimas Ubiquitina-Conjugadoras
14.
Curr Genet ; 30(4): 279-83, 1996 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8781169

RESUMEN

The antitumor activity of bleomycin is associated with its ability to produce DNA lesions. The cellular process that repairs bleomycin-induced DNA lesions is not entirely clear. To understand how these DNA lesions are repaired in eukaryotic cells, we used mini Tn3 : : LEU2 :: LacZ transposon mutagenesis to isolate yeast mutants that were hypersensitive to bleomycin. One of the mutants, HCY69, was characterized further and found to be 4- and 3-fold more sensitive, respectively, to bleomycin and hydrogen peroxide, as compared to the parent. The mutant displayed parental resistance to a variety of other DNA-damaging agents. Plasmid rescue and DNA sequence analysis revealed that the transposon interrupted the OXA1 gene, which encodes a protein required to process one of the subunits, cox II, of the cytochrome oxidase complex in mitochondria. A plasmid carrying the native OXA1 gene fully restored drug resistance to strain HCY69. Our data strongly suggest that functional mitochondria are required for cellular protection against the toxic effects of bleomycin.


Asunto(s)
Bleomicina/farmacología , Farmacorresistencia Microbiana/genética , Mitocondrias/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Daño del ADN/efectos de los fármacos , Elementos Transponibles de ADN , Complejo IV de Transporte de Electrones , Eliminación de Gen , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales , Mutagénesis , Mutación , Proteínas Nucleares/genética , Oxidantes/farmacología , Fenotipo
15.
Proc Natl Acad Sci U S A ; 98(15): 8440-6, 2001 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-11459987

RESUMEN

In vertebrates, the RAD51 protein is required for genetic recombination, DNA repair, and cellular proliferation. Five paralogs of RAD51, known as RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3, have been identified and also shown to be required for recombination and genome stability. At the present time, however, very little is known about their biochemical properties or precise biological functions. As a first step toward understanding the roles of the RAD51 paralogs in recombination, the human RAD51C and XRCC3 proteins were overexpressed and purified from baculovirus-infected insect cells. The two proteins copurify as a complex, a property that reflects their endogenous association observed in HeLa cells. Purified RAD51C--XRCC3 complex binds single-stranded, but not duplex DNA, to form protein--DNA networks that have been visualized by electron microscopy.


Asunto(s)
Reparación del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/aislamiento & purificación , Células HeLa , Humanos , Ratones , Microscopía Electrónica , Oligodesoxirribonucleótidos/metabolismo , Conejos , Recombinasa Rad51 , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Recombinación Genética , Spodoptera
16.
Microbiology (Reading) ; 141 ( Pt 10): 2629-35, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7582023

RESUMEN

Strain N106, a newly isolated soil actinomycete classified in the genus Nocardioides on the basis of its chemotaxonomy, produced an extracellular chitosanase and was highly active in chitosan degradation. A gene library of Nocardioides sp. N106 was constructed in the shuttle vector pFD666 and recombinant plasmids carrying the chitosanase gene (csnN106) were identified using the 5'-terminal portion of the chitosanase gene from Streptomyces sp. N174 as a hybridization probe. One plasmid, pCSN106-2, was used to transform Streptomyces lividans TK24. The chitosanase produced by S. lividans (pCSN106-2) is a protein of 29.5 kDa, with a pI 8.1, and hydrolyses chitosan by an endo-mechanism giving a mixture of dimers and trimers as end-products. N-terminal sequencing revealed that the mature chitosanase is a mixture of two enzyme forms differing by one N-terminal amino acid. The csnN106 gene is 79.5% homologous to the csn gene from Streptomyces sp. N174. At the amino acid level, both chitosanases are homologous at 74.4% and hydrophobic cluster analysis revealed a strict conservation of structural features. This chitosanase is the third known member of family 46 of glycosyl hydrolases.


Asunto(s)
Actinomycetales/genética , Genes Bacterianos , Glicósido Hidrolasas/clasificación , Glicósido Hidrolasas/genética , Actinomycetales/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Prueba de Complementación Genética , Glicósido Hidrolasas/aislamiento & purificación , Datos de Secuencia Molecular , Proteínas Recombinantes/aislamiento & purificación , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Streptomyces/genética
17.
Biochemistry ; 38(12): 3615-23, 1999 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-10090748

RESUMEN

Escherichia coli endo IV is a bifunctional DNA repair protein, i.e., possessing both apurinic/apyrimidinic (AP) endonuclease and 3'-diesterase activities. The former activity cleaves AP sites, whereas the latter one removes a variety of 3'-blocking groups present at single-strand breaks in damaged DNA. However, the precise reaction mechanism by which endo IV cleaves DNA lesions is unknown. To probe this mechanism, we have identified eight amino acid substitutions that alter endo IV function in vivo. Seven of these mutant proteins are variably expressed in E. coli and, when purified, show a 10-60-fold reduction in both AP endonuclease and 3'-diesterase activities. The most severe defect was observed with the one remaining mutant (E145G) that showed normal protein expression. This mutant has lost the ability to bind double-stranded DNA and showed a dramatic 150-fold reduction in enzymatic activities. We conclude that the AP endonuclease and the 3'-diesterase activities of endo IV are associated with a single active site, that is perhaps remote from the DNA binding domain.


Asunto(s)
Liasas de Carbono-Oxígeno/metabolismo , Reparación del ADN , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli , Escherichia coli/enzimología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Liasas de Carbono-Oxígeno/química , Liasas de Carbono-Oxígeno/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Desoxirribonucleasa IV (Fago T4-Inducido) , Farmacorresistencia Microbiana , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plásmidos/genética , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
18.
J Biol Chem ; 273(34): 21489-96, 1998 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-9705277

RESUMEN

The model carcinogen 4-nitroquinoline 1-oxide (4-NQO) has historically been characterized as "UV-mimetic" with respect to its genotoxic properties. However, recent evidence indicates that 4-NQO, unlike 254-nm UV light, may exert significant cytotoxic and/or mutagenic potential via the generation of reactive oxygen species. To elucidate the response of eukaryotic cells to 4-NQO-induced oxidative stress, we isolated Saccharomyces cerevisiae mutants exhibiting hypersensitivity to the cytotoxic effects of this mutagen. One such mutant, EBY1, was cross-sensitive to the oxidative agents UVA and diamide while retaining parental sensitivities to 254-nm UV light, methyl methanesulfonate, and ionizing radiation. A complementing gene (designated yPTPA1), restoring full UVA and 4-NQO resistance to EBY1 and encoding a protein that shares 40% identity with the human phosphotyrosyl phosphatase activator hPTPA, has been isolated. Targeted deletion of yPTPA1 in wild type yeast engendered the identical pattern of mutagen hypersensitivity as that manifested by EBY1, in addition to a spontaneous mutator phenotype that was markedly enhanced upon exposure to either UVA or 4-NQO but not to 254-nm UV or methyl methanesulfonate. Moreover, the yptpa1 deletion mutant exhibited a marked deficiency in the recovery of high molecular weight DNA following 4-NQO exposure, revealing a defect at the level of DNA repair. These data (i) strongly support a role for active oxygen intermediates in determining the genotoxic outcome of 4-NQO exposure and (ii) suggest a novel mechanism in yeast involving yPtpa1p-mediated activation of a phosphatase that participates in the repair of oxidative DNA damage, implying that hPTPA may exert a similar function in humans.


Asunto(s)
4-Nitroquinolina-1-Óxido/farmacología , Daño del ADN , Estrés Oxidativo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , ADN/efectos de los fármacos , ADN/efectos de la radiación , Humanos , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Isomerasa de Peptidilprolil , Fosfoproteínas Fosfatasas , Especies Reactivas de Oxígeno , Saccharomyces cerevisiae , Rayos Ultravioleta
19.
Mol Cell ; 7(2): 273-82, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11239456

RESUMEN

Individuals carrying BRCA2 mutations are predisposed to breast and ovarian cancers. Here, we show that BRCA2 plays a dual role in regulating the actions of RAD51, a protein essential for homologous recombination and DNA repair. First, interactions between RAD51 and the BRC3 or BRC4 regions of BRCA2 block nucleoprotein filament formation by RAD51. Alterations to the BRC3 region that mimic cancer-associated BRCA2 mutations fail to exhibit this effect. Second, transport of RAD51 to the nucleus is defective in cells carrying a cancer-associated BRCA2 truncation. Thus, BRCA2 regulates both the intracellular localization and DNA binding ability of RAD51. Loss of these controls following BRCA2 inactivation may be a key event leading to genomic instability and tumorigenesis.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Neoplasias/metabolismo , Recombinación Genética , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Proteína BRCA2 , Sitios de Unión , Neoplasias de la Mama/genética , Cromatografía en Gel , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Femenino , Humanos , Microscopía Electrónica , Modelos Biológicos , Datos de Secuencia Molecular , Peso Molecular , Mutación , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Nucleoproteínas/antagonistas & inhibidores , Nucleoproteínas/metabolismo , Nucleoproteínas/ultraestructura , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Recombinasa Rad51 , Fracciones Subcelulares , Especificidad por Sustrato , Factores de Transcripción/química , Factores de Transcripción/genética
20.
Genes Dev ; 15(24): 3296-307, 2001 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11751635

RESUMEN

Cells defective in any of the RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) are sensitive to DNA cross-linking agents and to ionizing radiation. Because the paralogs are required for the assembly of DNA damage-induced RAD51 foci, and mutant cell lines are defective in homologous recombination and show genomic instability, their defect is thought to be caused by an inability to promote efficient recombinational repair. Here, we show that the five paralogs exist in two distinct complexes in human cells: one contains RAD51B, RAD51C, RAD51D, and XRCC2 (defined as BCDX2), whereas the other consists of RAD51C with XRCC3. Both protein complexes have been purified to homogeneity and their biochemical properties investigated. BCDX2 binds single-stranded DNA and single-stranded gaps in duplex DNA, in accord with the proposal that the paralogs play an early (pre-RAD51) role in recombinational repair. Moreover, BCDX2 complex binds specifically to nicks in duplex DNA. We suggest that the extreme sensitivity of paralog-defective cell lines to cross-linking agents is owing to defects in the processing of incised cross links and the consequential failure to initiate recombinational repair at these sites.


Asunto(s)
Reparación del ADN/fisiología , Proteínas de Unión al ADN/aislamiento & purificación , Testículo/química , Adenosina Trifosfatasas/metabolismo , Baculoviridae/genética , Cromatografía en Gel , Reparación del ADN/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Microscopía Electrónica , Pruebas de Precipitina , Unión Proteica , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Recombinasa Rad51 , Proteínas Recombinantes/metabolismo , Recombinación Genética , Testículo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA