Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Annu Rev Biochem ; 88: 811-837, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30388027

RESUMEN

Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) are the most potent toxins known and cause botulism and tetanus, respectively. BoNTs are also widely utilized as therapeutic toxins. They contain three functional domains responsible for receptor-binding, membrane translocation, and proteolytic cleavage of host proteins required for synaptic vesicle exocytosis. These toxins also have distinct features: BoNTs exist within a progenitor toxin complex (PTC), which protects the toxin and facilitates its absorption in the gastrointestinal tract, whereas TeNT is uniquely transported retrogradely within motor neurons. Our increasing knowledge of these toxins has allowed the development of engineered toxins for medical uses. The discovery of new BoNTs and BoNT-like proteins provides additional tools to understand the evolution of the toxins and to engineer toxin-based therapeutics. This review summarizes the progress on our understanding of BoNTs and TeNT, focusing on the PTC, receptor recognition, new BoNT-like toxins, and therapeutic toxin engineering.


Asunto(s)
Toxinas Botulínicas/uso terapéutico , Metaloendopeptidasas/uso terapéutico , Toxina Tetánica/uso terapéutico , Animales , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/toxicidad , Humanos , Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/toxicidad , Conformación Proteica , Ingeniería de Proteínas , Toxina Tetánica/metabolismo , Toxina Tetánica/toxicidad
2.
PLoS Biol ; 18(3): e3000618, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32182233

RESUMEN

Botulinum neurotoxins (BoNTs) are a family of bacterial toxins with seven major serotypes (BoNT/A-G). The ability of these toxins to target and bind to motor nerve terminals is a key factor determining their potency and efficacy. Among these toxins, BoNT/B is one of the two types approved for medical and cosmetic uses. Besides binding to well-established receptors, an extended loop in the C-terminal receptor-binding domain (HC) of BoNT/B (HC/B) has been proposed to also contribute to toxin binding to neurons by interacting with lipid membranes (termed lipid-binding loop [LBL]). Analogous loops exist in the HCs of BoNT/C, D, G, and a chimeric toxin DC. However, it has been challenging to detect and characterize binding of LBLs to lipid membranes. Here, using the nanodisc system and biolayer interferometry assays, we find that HC/DC, C, and G, but not HC/B and HC/D, are capable of binding to receptor-free lipids directly, with HC/DC having the highest level of binding. Mutagenesis studies demonstrate the critical role of consecutive aromatic residues at the tip of the LBL for binding of HC/DC to lipid membranes. Taking advantage of this insight, we then create a "gain-of-function" mutant HC/B by replacing two nonaromatic residues at the tip of its LBL with tryptophan. Cocrystallization studies confirm that these two tryptophan residues do not alter the structure of HC/B or the interactions with its receptors. Such a mutated HC/B gains the ability to bind receptor-free lipid membranes and shows enhanced binding to cultured neurons. Finally, full-length BoNT/B containing two tryptophan mutations in its LBL, together with two additional mutations (E1191M/S1199Y) that increase binding to human receptors, is produced and evaluated in mice in vivo using Digit Abduction Score assays. This mutant toxin shows enhanced efficacy in paralyzing local muscles at the injection site and lower systemic diffusion, thus extending both safety range and duration of paralysis compared with the control BoNT/B. These findings establish a mechanistic understanding of LBL-lipid interactions and create a modified BoNT/B with improved therapeutic efficacy.


Asunto(s)
Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas Tipo A/farmacología , Membrana Celular/metabolismo , Animales , Sitios de Unión , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/genética , Células Cultivadas , Cristalografía por Rayos X , Femenino , Gangliósidos/metabolismo , Lípidos de la Membrana/metabolismo , Ratones , Músculo Esquelético/efectos de los fármacos , Mutación , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Parálisis/inducido químicamente , Ingeniería de Proteínas , Ratas Transgénicas , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Sinaptotagminas/metabolismo , Triptófano/química , Triptófano/metabolismo
3.
Nucleic Acids Res ; 48(21): 12234-12251, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33211885

RESUMEN

Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , ADN Glicosilasas/genética , ADN de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Poli(ADP-Ribosa) Polimerasa-1/inmunología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/mortalidad , Daño del ADN , ADN Glicosilasas/antagonistas & inhibidores , ADN Glicosilasas/metabolismo , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN de Neoplasias/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Guanina/análogos & derivados , Guanina/metabolismo , Células HCT116 , Humanos , Ratones , Ratones Desnudos , Terapia Molecular Dirigida , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Análisis de Supervivencia , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361086

RESUMEN

The botulinum neurotoxins are potent molecules that are not only responsible for the lethal paralytic disease botulism, but have also been harnessed for therapeutic uses in the treatment of an increasing number of chronic neurological and neuromuscular disorders, in addition to cosmetic applications. The toxins act at the cholinergic nerve terminals thanks to an efficient and specific mechanism of cell recognition which is based on a dual receptor system that involves gangliosides and protein receptors. Binding to surface-anchored gangliosides is the first essential step in this process. Here, we determined the X-ray crystal structure of the binding domain of BoNT/E, a toxin of clinical interest, in complex with its GD1a oligosaccharide receptor. Beyond confirmation of the conserved ganglioside binding site, we identified key interacting residues that are unique to BoNT/E and a significant rearrangement of loop 1228-1237 upon carbohydrate binding. These observations were also supported by thermodynamic measurements of the binding reaction and assessment of ganglioside selectivity by immobilised-receptor binding assays. These results provide a structural basis to understand the specificity of BoNT/E for complex gangliosides.


Asunto(s)
Toxinas Botulínicas/química , Toxinas Botulínicas/metabolismo , Gangliósidos/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido
5.
J Biol Chem ; 294(45): 16663-16671, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31537648

RESUMEN

Assembly of the mitochondrial respiratory chain requires the coordinated synthesis of mitochondrial and nuclear encoded subunits, redox co-factor acquisition, and correct joining of the subunits to form functional complexes. The conserved Cbp3-Cbp6 chaperone complex binds newly synthesized cytochrome b and supports the ordered acquisition of the heme co-factors. Moreover, it functions as a translational activator by interacting with the mitoribosome. Cbp3 consists of two distinct domains: an N-terminal domain present in mitochondrial Cbp3 homologs and a highly conserved C-terminal domain comprising a ubiquinol-cytochrome c chaperone region. Here, we solved the crystal structure of this C-terminal domain from a bacterial homolog at 1.4 Å resolution, revealing a unique all-helical fold. This structure allowed mapping of the interaction sites of yeast Cbp3 with Cbp6 and cytochrome b via site-specific photo-cross-linking. We propose that mitochondrial Cbp3 homologs carry an N-terminal extension that positions the conserved C-terminal domain at the ribosomal tunnel exit for an efficient interaction with its substrate, the newly synthesized cytochrome b protein.


Asunto(s)
Citocromos b/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Brucella abortus/metabolismo , Cristalografía por Rayos X , Citocromos b/química , Citocromos b/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
6.
EMBO Rep ; 18(8): 1306-1317, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28645943

RESUMEN

The tetanus neurotoxin (TeNT) is a highly potent toxin produced by Clostridium tetani that inhibits neurotransmission of inhibitory interneurons, causing spastic paralysis in the tetanus disease. TeNT differs from the other clostridial neurotoxins by its unique ability to target the central nervous system by retrograde axonal transport. The crystal structure of the tetanus toxin reveals a "closed" domain arrangement stabilised by two disulphide bridges, and the molecular details of the toxin's interaction with its polysaccharide receptor. An integrative analysis combining X-ray crystallography, solution scattering and single particle electron cryo-microscopy reveals pH-mediated domain rearrangements that may give TeNT the ability to adapt to the multiple environments encountered during intoxication, and facilitate binding to distinct receptors.


Asunto(s)
Toxina Tetánica/química , Toxina Tetánica/metabolismo , Animales , Cristalografía por Rayos X , Humanos , Concentración de Iones de Hidrógeno , Metaloendopeptidasas/química , Metaloendopeptidasas/metabolismo , Microscopía Electrónica , Neurotoxinas/química , Neurotoxinas/metabolismo , Unión Proteica , Dominios Proteicos , Transmisión Sináptica/efectos de los fármacos , Toxina Tetánica/farmacología
7.
J Am Chem Soc ; 139(1): 218-230, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27958736

RESUMEN

The highly poisonous botulinum neurotoxins, produced by the bacterium Clostridium botulinum, act on their hosts by a high-affinity association to two receptors on neuronal cell surfaces as the first step of invasion. The glycan motifs of gangliosides serve as initial coreceptors for these protein complexes, whereby a membrane protein receptor is bound. Herein we set out to characterize the carbohydrate minimal binding epitope of the botulinum neurotoxin serotype A. By means of ligand-based NMR spectroscopy, X-ray crystallography, computer simulations, and isothermal titration calorimetry, a screening of ganglioside analogues together with a detailed characterization of various carbohydrate ligand complexes with the toxin were accomplished. We show that the representation of the glycan epitope to the protein affects the details of binding. Notably, both branches of the oligosaccharide GD1a can associate to botulinum neurotoxin serotype A when expressed as individual trisaccharides. It is, however, the terminal branch of GD1a as well as this trisaccharide motif alone, corresponding to the sialyl-Thomsen-Friedenreich antigen, that represents the active ligand epitope, and these compounds bind to the neurotoxin with a high degree of predisposition but with low affinities. This finding does not correlate with the oligosaccharide moieties having a strong contribution to the total affinity, which was expected to be the case. We here propose that the glycan part of the ganglioside receptors mainly provides abundance and specificity, whereas the interaction with the membrane itself and protein receptor brings about the strong total binding of the toxin to the neuronal membrane.


Asunto(s)
Toxinas Botulínicas Tipo A/química , Polisacáridos/química , Receptores de Superficie Celular/química , Toxinas Botulínicas Tipo A/metabolismo , Conformación de Carbohidratos , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Polisacáridos/metabolismo , Receptores de Superficie Celular/metabolismo
8.
Annu Rev Pharmacol Toxicol ; 54: 27-51, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24016211

RESUMEN

Botulinum neurotoxins (BoNTs) cause flaccid paralysis by inhibiting neurotransmission at cholinergic nerve terminals. Each BoNT consists of three domains that are essential for toxicity: the binding domain, the translocation domain, and the catalytic light-chain domain. BoNT modular architecture is associated with a multistep mechanism that culminates in the intracellular proteolysis of SNARE (soluble N-ethylmaleimide-sensitive-fusion-protein attachment protein receptor) proteins, which prevents synaptic vesicle exocytosis. As the most toxic proteins known, BoNTs have been extensively studied and are used as pharmaceutical agents to treat an increasing variety of disorders. This review summarizes the level of sophistication reached in BoNT engineering and highlights the diversity of approaches taken to utilize the modularity of the toxin. Improved efficiency and applicability have been achieved by direct mutagenesis and interserotype domain rearrangement. The scope of BoNT activity has been extended to nonneuronal cells and offers the basis for novel biomolecules in the treatment of secretion disorders.


Asunto(s)
Toxinas Botulínicas/genética , Toxinas Botulínicas/farmacología , Ingeniería de Proteínas , Animales , Toxinas Botulínicas/química , Línea Celular , Exocitosis/efectos de los fármacos , Humanos , Neurotoxinas , Conformación Proteica , Proteolisis/efectos de los fármacos , Proteínas SNARE/metabolismo , Transmisión Sináptica/efectos de los fármacos
9.
Hum Mol Genet ; 23(6): 1479-91, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24163131

RESUMEN

Renal tubular dysgenesis (RTD) is a recessive autosomal disease characterized most often by perinatal death. It is due to the inactivation of any of the major genes of the renin-angiotensin system (RAS), one of which is the angiotensin I-converting enzyme (ACE). ACE is present as a tissue-bound enzyme and circulates in plasma after its solubilization. In this report, we present the effect of different ACE mutations associated with RTD on ACE intracellular trafficking, secretion and enzymatic activity. One truncated mutant, R762X, responsible for neonatal death was found to be an enzymatically active, secreted form, not inserted in the plasma membrane. In contrast, another mutant, R1180P, was compatible with life after transient neonatal renal insufficiency. This mutant was located at the plasma membrane and rapidly secreted. These results highlight the importance of tissue-bound ACE versus circulating ACE and show that the total absence of cell surface expression of ACE is incompatible with life. In addition, two missense mutants (W594R and R828H) and two truncated mutants (Q1136X and G1145AX) were also studied. These mutants were neither inserted in the plasma membrane nor secreted. Finally, the structural implications of these ACE mutations were examined by molecular modelling, which suggested some important structural alterations such as disruption of intra-molecular non-covalent interactions (e.g. salt bridges).


Asunto(s)
Muerte Fetal/genética , Túbulos Renales Proximales/anomalías , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Anomalías Urogenitales/genética , Animales , Células CHO , Cricetulus , Cristalografía por Rayos X , Femenino , Células HEK293 , Humanos , Recién Nacido , Masculino , Modelos Moleculares , Mutación Missense , Peptidil-Dipeptidasa A/sangre , Peptidil-Dipeptidasa A/química , Conformación Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas
10.
J Biol Chem ; 289(3): 1798-814, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297181

RESUMEN

Somatic angiotensin-converting enzyme (sACE), a key regulator of blood pressure and electrolyte fluid homeostasis, cleaves the vasoactive angiotensin-I, bradykinin, and a number of other physiologically relevant peptides. sACE consists of two homologous and catalytically active N- and C-domains, which display marked differences in substrate specificities and chloride activation. A series of single substitution mutants were generated and evaluated under varying chloride concentrations using isothermal titration calorimetry. The x-ray crystal structures of the mutants provided details on the chloride-dependent interactions with ACE. Chloride binding in the chloride 1 pocket of C-domain ACE was found to affect positioning of residues from the active site. Analysis of the chloride 2 pocket R522Q and R522K mutations revealed the key interactions with the catalytic site that are stabilized via chloride coordination of Arg(522). Substrate interactions in the S2 subsite were shown to affect chloride affinity in the chloride 2 pocket. The Glu(403)-Lys(118) salt bridge in C-domain ACE was shown to stabilize the hinge-bending region and reduce chloride affinity by constraining the chloride 2 pocket. This work demonstrated that substrate composition to the C-terminal side of the scissile bond as well as interactions of larger substrates in the S2 subsite moderate chloride affinity in the chloride 2 pocket of the ACE C-domain, providing a rationale for the substrate-selective nature of chloride dependence in ACE and how this varies between the N- and C-domains.


Asunto(s)
Cloruros/química , Peptidil-Dipeptidasa A/química , Sustitución de Aminoácidos , Sitios de Unión , Cloruros/metabolismo , Cristalografía por Rayos X , Humanos , Mutación Missense , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Termodinámica
11.
Biol Chem ; 395(10): 1135-49, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25205727

RESUMEN

Somatic angiotensin-I converting enzyme (sACE) has an essential role in the regulation of blood pressure and electrolyte fluid homeostasis. It is a zinc protease that cleaves angiotensin-I (AngI), bradykinin, and a broad range of other signalling peptides. The enzyme activity is provided by two homologous domains (N- and C-), which display clear differences in substrate specificities and chloride activation. The presence of chloride ions in sACE and its unusual role in activity was identified early on in the characterisation of the enzyme. The molecular mechanisms of chloride activation have been investigated thoroughly through mutagenesis studies and shown to be substrate-dependent. Recent results from X-ray crystallography structural analysis have provided the basis for the intricate interactions between ACE, its substrate and chloride ions. Here we describe the role of chloride ions in human ACE and its physiological consequences. Insights into the chloride activation of the N- and C-domains could impact the design of improved domain-specific ACE inhibitors.


Asunto(s)
Cloruros/metabolismo , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares
12.
Clin Sci (Lond) ; 126(4): 305-13, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24015848

RESUMEN

ACE (angiotensin-1-converting enzyme) is a zinc metallopeptidase that plays a prominent role in blood pressure regulation and electrolyte homeostasis. ACE consists of two homologous domains that despite similarities of sequence and topology display differences in substrate processing and inhibitor binding. The design of inhibitors that selectively inhibit the N-domain (N-selective) could be useful in treating conditions of tissue injury and fibrosis due to build-up of N-domain-specific substrate Ac-SDKP (N-acetyl-Ser-Asp-Lys-Pro). Using a receptor-based SHOP (scaffold hopping) approach with N-selective inhibitor RXP407, a shortlist of scaffolds that consisted of modified RXP407 backbones with novel chemotypes was generated. These scaffolds were selected on the basis of enhanced predicted interaction energies with N-domain residues that differed from their C-domain counterparts. One scaffold was synthesized and inhibitory binding tested using a fluorogenic ACE assay. A molecule incorporating a tetrazole moiety in the P2 position (compound 33RE) displayed potent inhibition (K(i)=11.21±0.74 nM) and was 927-fold more selective for the N-domain than the C-domain. A crystal structure of compound 33RE in complex with the N-domain revealed its mode of binding through aromatic stacking with His388 and a direct hydrogen bond with the hydroxy group of the N-domain specific Tyr369. This work further elucidates the molecular basis for N-domain-selective inhibition and assists in the design of novel N-selective ACE inhibitors that could be employed in treatment of fibrosis disorders.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/química , Presión Sanguínea/efectos de los fármacos , Diseño de Fármacos , Oligopéptidos/química , Peptidil-Dipeptidasa A/química , Ácidos Fosfínicos/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Sitios de Unión/fisiología , Conformación Proteica
13.
Cell Rep ; 43(2): 113727, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38308843

RESUMEN

The G protein-coupled receptors of the Frizzled (FZD) family, in particular FZD1,2,7, are receptors that are exploited by Clostridioides difficile toxin B (TcdB), the major virulence factor responsible for pathogenesis associated with Clostridioides difficile infection. We employ a live-cell assay examining the affinity between full-length FZDs and TcdB. Moreover, we present cryoelectron microscopy structures of TcdB alone and in complex with full-length FZD7, which reveal that large structural rearrangements of the combined repetitive polypeptide domain are required for interaction with FZDs and other TcdB receptors, constituting a first step for receptor recognition. Furthermore, we show that bezlotoxumab, an FDA-approved monoclonal antibody to treat Clostridioides difficile infection, favors the apo-TcdB structure and thus disrupts binding with FZD7. The dynamic transition between the two conformations of TcdB also governs the stability of the pore-forming region. Thus, our work provides structural and functional insight into how conformational dynamics of TcdB determine receptor binding.


Asunto(s)
Toxinas Bacterianas , Compuestos de Boro , Clostridioides difficile , Infecciones por Clostridium , Humanos , Microscopía por Crioelectrón
14.
bioRxiv ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36712025

RESUMEN

Botulinum neurotoxins (BoNTs) are the most potent toxins known and are used to treat an increasing number of medical disorders. All BoNTs are naturally co-expressed with a protective partner protein (NTNH) with which they form a 300 kDa complex, to resist acidic and proteolytic attack from the digestive tract. We have previously identified a new botulinum neurotoxin serotype, BoNT/X, that has unique and therapeutically attractive properties. We present the cryo-EM structure of the BoNT/X-NTNH/X complex at 3.1 Å resolution. Unexpectedly, the BoNT/X complex is stable and protease resistant at both neutral and acidic pH and disassembles only in alkaline conditions. Using the stabilizing effect of NTNH, we isolated BoNT/X and showed that it has very low potency both in vitro and in vivo . Given the high catalytic activity and translocation efficacy of BoNT/X, low activity of the full toxin is likely due to the receptor-binding domain, which presents weak ganglioside binding and exposed hydrophobic surfaces.

15.
ChemMedChem ; 18(1): e202200310, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36128847

RESUMEN

8-oxo Guanine DNA Glycosylase 1 is the initiating enzyme within base excision repair and removes oxidized guanines from damaged DNA. Since unrepaired 8-oxoG could lead to G : C→T : A transversion, base removal is of utmost importance for cells to ensure genomic integrity. For cells with elevated levels of reactive oxygen species this dependency is further increased. In the past we and others have validated OGG1 as a target for inhibitors to treat cancer and inflammation. Here, we present the optimization campaign that led to the broadly used tool compound TH5487. Based on results from a small molecule screening campaign, we performed hit to lead expansion and arrived at potent and selective substituted N-piperidinyl-benzimidazolones. Using X-ray crystallography data, we describe the surprising binding mode of the most potent member of the class, TH8535. Here, the N-Piperidinyl-linker adopts a chair instead of a boat conformation which was found for weaker analogues. We further demonstrate cellular target engagement and efficacy of TH8535 against a number of cancer cell lines.


Asunto(s)
ADN Glicosilasas , Neoplasias , Humanos , ADN Glicosilasas/química , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Guanina/química , Guanina/metabolismo , Reparación del ADN , Bencimidazoles/farmacología , Daño del ADN
16.
Science ; 376(6600): 1471-1476, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35737787

RESUMEN

Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed ß,δ-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure. In cells, TH10785 increases OGG1 recruitment to and repair of oxidative DNA damage. This alters the repair process, which no longer requires APE1 but instead is dependent on polynucleotide kinase phosphatase (PNKP1) activity. The increased repair of oxidative DNA lesions with a small molecule may have therapeutic applications in various diseases and aging.


Asunto(s)
Daño del ADN , ADN Glicosilasas , Reparación del ADN , Estrés Oxidativo , Biocatálisis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , ADN Glicosilasas/química , ADN Glicosilasas/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Activación Enzimática , Glicina/química , Humanos , Ligandos , Estrés Oxidativo/genética , Fenilalanina/química , Especificidad por Sustrato
17.
J Struct Biol ; 174(1): 52-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21078393

RESUMEN

Botulinum neurotoxins (BoNTs) cause flaccid paralysis by inhibiting neurotransmission at cholinergic nerve terminals. BoNTs consist of three essential domains for toxicity: the cell binding domain (Hc), the translocation domain (Hn) and the catalytic domain (LC). A functional derivative (LHn) of the parent neurotoxin B composed of Hn and LC domains was recombinantly produced and characterised. LHn/B crystallographic structure at 2.8Å resolution is reported. The catalytic activity of LHn/B towards recombinant human VAMP was analysed by substrate cleavage assay and showed a higher specificity for VAMP-1, -2 compared to VAMP-3. LHn/B also showed measurable activity in living spinal cord neurons. Despite lacking the Hc (cell-targeting) domain, LHn/B retained the capacity to internalize and cleave intracellular VAMP-1 and -2 when added to the cells at high concentration. These activities of the LHn/B fragment demonstrate the utility of engineered botulinum neurotoxin fragments as analytical tools to study the mechanisms of action of BoNT neurotoxins and of SNARE proteins.


Asunto(s)
Toxinas Botulínicas/química , Toxinas Botulínicas/metabolismo , Clostridium botulinum/metabolismo , Secuencia de Aminoácidos , Animales , Toxinas Botulínicas/genética , Toxinas Botulínicas Tipo A , Células Cultivadas , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Ratas , Ratas Sprague-Dawley , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Proteína 1 de Membrana Asociada a Vesículas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
18.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1466-72, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139146

RESUMEN

Targeted secretion inhibitors (TSIs) are a new class of engineered biopharmaceutical molecules derived from the botulinum neurotoxins (BoNTs). They consist of the metalloprotease light chain (LC) and translocation domain (Hn) of BoNT; they thus lack the native toxicity towards motor neurons but are able to target soluble N-ethylmaleimide-sensitive fusion protein attachment receptor (SNARE) proteins. These functional fragment (LHn) derivatives are expressed as single-chain proteins and require post-translational activation into di-chain molecules for function. A range of BoNT derivatives have been produced to demonstrate the successful use of engineered SNARE substrate peptides at the LC-Hn interface that gives these molecules self-activating capabilities. Alternatively, recognition sites for specific exoproteases can be engineered to allow controlled activation. Here, the crystal structures of three LHn derivatives are reported between 2.7 and 3.0 Å resolution. Two of these molecules are derivatives of serotype A that contain a SNARE peptide. Additionally, a third structure corresponds to LHn serotype B that includes peptide linkers at the exoprotease activation site. In all three cases the added engineered segments could not be modelled owing to disorder. However, these structures highlight the strong interactions holding the LHn fold together despite the inclusion of significant polypeptide sequences at the LC-Hn interface.


Asunto(s)
Toxinas Botulínicas/química , Clostridium botulinum/enzimología , Toxinas Botulínicas/genética , Humanos , Modelos Moleculares , Mutación , Ingeniería de Proteínas , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
19.
Toxins (Basel) ; 14(1)2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35050991

RESUMEN

Botulinum neurotoxins (BoNTs) are the causative agents of a potentially lethal paralytic disease targeting cholinergic nerve terminals. Multiple BoNT serotypes exist, with types A, B and E being the main cause of human botulism. Their extreme toxicity has been exploited for cosmetic and therapeutic uses to treat a wide range of neuromuscular disorders. Although naturally occurring BoNT types share a common end effect, their activity varies significantly based on the neuronal cell-surface receptors and intracellular SNARE substrates they target. These properties are the result of structural variations that have traditionally been studied using biophysical methods such as X-ray crystallography. Here, we determined the first structures of botulinum neurotoxins using single-particle cryogenic electron microscopy. The maps obtained at 3.6 and 3.7 Å for BoNT/B and /E, respectively, highlight the subtle structural dynamism between domains, and of the binding domain in particular. This study demonstrates how the recent advances made in the field of single-particle electron microscopy can be applied to bacterial toxins of clinical relevance and the botulinum neurotoxin family in particular.


Asunto(s)
Toxinas Botulínicas Tipo A/ultraestructura , Toxinas Botulínicas/ultraestructura , Clostridium botulinum/química , Toxinas Botulínicas/química , Toxinas Botulínicas Tipo A/química , Microscopía por Crioelectrón
20.
Toxins (Basel) ; 12(6)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549399

RESUMEN

Aeromonas exotoxin A (AE) is a bacterial virulence factor recently discovered in a clinical case of necrotising fasciitis caused by the flesh-eating Aeromonas hydrophila. Here, database mining shows that AE is present in the genome of several emerging Aeromonas pathogenic species. The X-ray crystal structure of AE was solved at 2.3 Å and presents all the hallmarks common to diphthamide-specific mono-ADP-ribosylating toxins, suggesting AE is a fourth member of this family alongside the diphtheria toxin, Pseudomonas exotoxin A and cholix. Structural homology indicates AE may use a similar mechanism of cytotoxicity that targets eukaryotic elongation factor 2 and thus inhibition of protein synthesis. The structure of AE also highlights unique features including a metal binding site, and a negatively charged cleft that could play a role in interdomain interactions and may affect toxicity. This study raises new opportunities to engineer alternative toxin-based molecules with pharmaceutical potential.


Asunto(s)
ADP Ribosa Transferasas/química , Aeromonas/enzimología , Enterotoxinas/química , Factores de Virulencia/química , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/aislamiento & purificación , Aeromonas/genética , Aeromonas/patogenicidad , Cristalización , Cristalografía por Rayos X , Enterotoxinas/genética , Enterotoxinas/aislamiento & purificación , Conformación Proteica , Relación Estructura-Actividad , Factores de Virulencia/genética , Factores de Virulencia/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA