Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 288, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970689

RESUMEN

Orexinergic neurons are critically involved in regulating arousal, wakefulness, and appetite. Their dysfunction has been associated with sleeping disorders, and non-peptide drugs are currently being developed to treat insomnia and narcolepsy. Yet, no light-regulated agents are available to reversibly control their activity. To meet this need, a photoswitchable peptide analogue of the endogenous neuroexcitatory peptide orexin-B was designed, synthesized, and tested in vitro and in vivo. This compound - photorexin - is the first photo-reversible ligand reported for orexin receptors. It allows dynamic control of activity in vitro (including almost the same efficacy as orexin-B, high nanomolar potency, and subtype selectivity to human OX2 receptors) and in vivo in zebrafish larvae by direct application in water. Photorexin induces dose- and light-dependent changes in locomotion and a reduction in the successive induction reflex that is associated with sleep behavior. Molecular dynamics calculations indicate that trans and cis photorexin adopt similar bent conformations and that the only discriminant between their structures and activities is the positioning of the N-terminus. This, in the case of the more active trans isomer, points towards the OX2 N-terminus and extra-cellular loop 2, a region of the receptor known to be involved in ligand binding and recognition consistent with a "message-address" system. Thus, our approach could be extended to several important families of endogenous peptides, such as endothelins, nociceptin, and dynorphins among others, that bind to their cognate receptors through a similar mechanism: a "message" domain involved in receptor activation and signal transduction, and an "address" sequence for receptor occupation and improved binding affinity.


Asunto(s)
Luz , Receptores de Orexina , Orexinas , Pez Cebra , Receptores de Orexina/metabolismo , Receptores de Orexina/química , Animales , Orexinas/metabolismo , Humanos , Locomoción/efectos de los fármacos , Simulación de Dinámica Molecular , Larva/metabolismo , Larva/efectos de los fármacos , Células HEK293 , Ligandos
2.
Angew Chem Int Ed Engl ; : e202403636, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887153

RESUMEN

A problem of systemic pharmacotherapy is off-target activity, which causes adverse effects. Outstanding examples include neuroinhibitory medications like antiseizure drugs, which are used against epilepsy and neuropathic pain but cause systemic side effects. There is a need of drugs that inhibit nerve signals locally and on-demand without affecting other regions of the body. Photopharmacology aims to address this problem with light-activated drugs and localized illumination in the target organ. Here, we have developed photoswitchable derivatives of the widely prescribed antiseizure drug carbamazepine. For that purpose, we expanded our method of ortho azologization of tricyclic drugs to meta/para and to N-bridged diazocine. Our results validate the concept of ortho cryptoazologs (uniquely exemplified by Carbazopine-1) and bring to light Carbadiazocine (8), which can be photoswitched between 400-590 nm light (using violet LEDs and halogen lamps) and shows good drug-likeness and predicted safety. Both compounds display photoswitchable activity in vitro and in translucent zebrafish larvae. Carbadiazocine (8) also offers in vivo analgesic efficacy (mechanical and thermal stimuli) in a rat model of neuropathic pain and a simple and compelling treatment demonstration with non-invasive illumination.

3.
Pharmacol Res ; 194: 106813, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37302724

RESUMEN

The study of nicotinic acetylcholine receptors (nAChRs) has significantly progressed in the last decade, due to a) the improved techniques available for structural studies; b) the identification of ligands interacting at orthosteric and allosteric recognition sites on the nAChR proteins, able to tune channel conformational states; c) the better functional characterization of receptor subtypes/subunits and their therapeutic potential; d) the availability of novel pharmacological agents able to activate or block nicotinic-mediated cholinergic responses with subtype or stoichiometry selectivity. The copious literature on nAChRs is related to the pharmacological profile of new, promising subtype selective derivatives as well as the encouraging preclinical and early clinical evaluation of known ligands. However, recently approved therapeutic derivatives are still missing, and examples of ligands discontinued in advanced CNS clinical trials include drug candidates acting at both neuronal homomeric and heteromeric receptors. In this review, we have selected heteromeric nAChRs as the target and comment on literature reports of the past five years dealing with the discovery of new small molecule ligands or the advanced pharmacological/preclinical investigation of more promising compounds. The results obtained with bifunctional nicotinic ligands and a light-activated ligand as well as the applications of promising radiopharmaceuticals for heteromeric subtypes are also discussed.


Asunto(s)
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Ligandos , Regulación Alostérica , Neuronas/metabolismo , Transmisión Sináptica , Nicotina , Antagonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/farmacología
4.
Molecules ; 28(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36903650

RESUMEN

In the last few years, fluorescence resonance energy transfer (FRET) receptor sensors have contributed to the understanding of GPCR ligand binding and functional activation. FRET sensors based on muscarinic acetylcholine receptors (mAChRs) have been employed to study dual-steric ligands, allowing for the detection of different kinetics and distinguishing between partial, full, and super agonism. Herein, we report the synthesis of the two series of bitopic ligands, 12-Cn and 13-Cn, and their pharmacological investigation at the M1, M2, M4, and M5 FRET-based receptor sensors. The hybrids were prepared by merging the pharmacophoric moieties of the M1/M4-preferring orthosteric agonist Xanomeline 10 and the M1-selective positive allosteric modulator 77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone) 11. The two pharmacophores were connected through alkylene chains of different lengths (C3, C5, C7, and C9). Analyzing the FRET responses, the tertiary amine compounds 12-C5, 12-C7, and 12-C9 evidenced a selective activation of M1 mAChRs, while the methyl tetrahydropyridinium salts 13-C5, 13-C7, and 13-C9 showed a degree of selectivity for M1 and M4 mAChRs. Moreover, whereas hybrids 12-Cn showed an almost linear response at the M1 subtype, hybrids 13-Cn evidenced a bell-shaped activation response. This different activation pattern suggests that the positive charge anchoring the compound 13-Cn to the orthosteric site ensues a degree of receptor activation depending on the linker length, which induces a graded conformational interference with the binding pocket closure. These bitopic derivatives represent novel pharmacological tools for a better understanding of ligand-receptor interactions at a molecular level.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Receptores Acoplados a Proteínas G , Cricetinae , Animales , Ligandos , Receptores Muscarínicos , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Células CHO
5.
Angew Chem Int Ed Engl ; 62(51): e202311181, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37823736

RESUMEN

To interrogate neural circuits and crack their codes, in vivo brain activity imaging must be combined with spatiotemporally precise stimulation in three dimensions using genetic or pharmacological specificity. This challenge requires deep penetration and focusing as provided by infrared light and multiphoton excitation, and has promoted two-photon photopharmacology and optogenetics. However, three-photon brain stimulation in vivo remains to be demonstrated. We report the regulation of neuronal activity in zebrafish larvae by three-photon excitation of a photoswitchable muscarinic agonist at 50 pM, a billion-fold lower concentration than used for uncaging, and with mid-infrared light of 1560 nm, the longest reported photoswitch wavelength. Robust, physiologically relevant photoresponses allow modulating brain activity in wild-type animals with spatiotemporal and pharmacological precision. Computational calculations predict that azobenzene-based ligands have high three-photon absorption cross-section and can be used directly with pulsed infrared light. The expansion of three-photon pharmacology will deeply impact basic neurobiology and neuromodulation phototherapies.


Asunto(s)
Fotones , Pez Cebra , Animales , Rayos Infrarrojos , Ligandos
6.
J Am Chem Soc ; 144(34): 15595-15602, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35976640

RESUMEN

The interest in the photochromism and functional applications of donor-acceptor Stenhouse adducts (DASAs) soared in recent years owing to their outstanding advantages and flexible design. However, their low solubility and irreversible conversion in aqueous solutions hampered exploring DASAs for biology and medicine. It is notably unknown whether the barbiturate electron acceptor group retains the pharmacological activity of drugs such as phenobarbital, which targets γ-aminobutyric acid (GABA)-type A receptors (GABAARs) in the brain. Here, we have developed the model compound DASA-barbital based on a scaffold of red-switching second-generation DASAs, and we demonstrate that it is active in GABAARs and alters the neuronal firing rate in a physiological medium at neutral pH. DASA-barbital can also be reversibly photoswitched in acidic aqueous solutions using cyclodextrin, an approved ingredient of drug formulations. These findings clarify the path toward the biological applications of DASAs and to exploit the versatility displayed in polymers and materials science.


Asunto(s)
Barbital , Agua , Barbital/farmacología , Neuronas , Polímeros , Ácido gamma-Aminobutírico
7.
J Am Chem Soc ; 144(21): 9229-9239, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35584208

RESUMEN

Artificial control of neuronal activity enables the study of neural circuits and restoration of neural functions. Direct, rapid, and sustained photocontrol of intact neurons could overcome the limitations of established electrical stimulation such as poor selectivity. We have developed fast photoswitchable ligands of glutamate receptors (GluRs) to enable neuronal control in the auditory system. The new photoswitchable ligands induced photocurrents in untransfected neurons upon covalently tethering to endogenous GluRs and activating them reversibly with visible light pulses of a few milliseconds. As a proof of concept of these molecular prostheses, we applied them to the ultrafast synapses of auditory neurons of the cochlea that encode sound and provide auditory input to the brain. This drug-based method afforded the optical stimulation of auditory neurons of adult gerbils at hundreds of hertz without genetic manipulation that would be required for their optogenetic control. This indicates that the new photoswitchable ligands are also applicable to the spatiotemporal control of fast spiking interneurons in the brain.


Asunto(s)
Cóclea , Optogenética , Cóclea/fisiología , Ligandos , Neuronas , Optogenética/métodos , Prótesis e Implantes
8.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361710

RESUMEN

Light is an extraordinary tool allowing us to read out and control neuronal functions thanks to its unique properties: it has a great degree of bioorthogonality and is minimally invasive; it can be precisely delivered with high spatial and temporal precision; and it can be used simultaneously or consequently at multiple wavelengths and locations [...].


Asunto(s)
Luz , Neuronas , Neuronas/fisiología , Humanos
9.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36077512

RESUMEN

Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions, and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circuits have limited specificity, reversibility, resolution, or require genetic manipulation. Here, we introduce azodopa, a novel photoswitchable ligand that enables reversible spatiotemporal control of dopaminergic transmission. We demonstrate that azodopa activates D1-like receptors in vitro in a light-dependent manner. Moreover, it enables reversibly photocontrolling zebrafish motility on a timescale of seconds and allows separating the retinal component of dopaminergic neurotransmission. Azodopa increases the overall neural activity in the cortex of anesthetized mice and displays illumination-dependent activity in individual cells. Azodopa is the first photoswitchable dopamine agonist with demonstrated efficacy in wild-type animals and opens the way to remotely controlling dopaminergic neurotransmission for fundamental and therapeutic purposes.


Asunto(s)
Animales Salvajes , Pez Cebra , Animales , Dopamina , Ligandos , Ratones , Transmisión Sináptica
10.
Molecules ; 26(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34946750

RESUMEN

Due to the microenvironment created by Schwann cell (SC) activity, peripheral nerve fibers are able to regenerate. Inflammation is the first response to nerve damage and the removal of cellular and myelin debris is essential in preventing the persistence of the local inflammation that may negatively affect nerve regeneration. Acetylcholine (ACh) is one of the neurotransmitters involved in the modulation of inflammation through the activity of its receptors, belonging to both the muscarinic and nicotinic classes. In this report, we evaluated the expression of α7 nicotinic acetylcholine receptors (nAChRs) in rat sciatic nerve, particularly in SCs, after peripheral nerve injury. α7 nAChRs are absent in sciatic nerve immediately after dissection, but their expression is significantly enhanced in SCs after 24 h in cultured sciatic nerve segments or in the presence of the proinflammatory neuropeptide Bradykinin (BK). Moreover, we found that activation of α7 nAChRs with the selective partial agonist ICH3 causes a decreased expression of c-Jun and an upregulation of uPA, MMP2 and MMP9 activity. In addition, ICH3 treatment inhibits IL-6 transcript level expression as well as the cytokine release. These results suggest that ACh, probably released from regenerating axons or by SC themselves, may actively promote through α7 nAChRs activation an anti-inflammatory microenvironment that contributes to better improving the peripheral nerve regeneration.


Asunto(s)
Regeneración Nerviosa , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Acetilcolina/metabolismo , Animales , Células Cultivadas , Masculino , Neurotransmisores/metabolismo , Ratas , Ratas Wistar , Células de Schwann/metabolismo
11.
Angew Chem Int Ed Engl ; 60(7): 3625-3631, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33103317

RESUMEN

Adrenoceptors are ubiquitous and mediate important autonomic functions as well as modulating arousal, cognition, and pain on a central level. Understanding these physiological processes and their underlying neural circuits requires manipulating adrenergic neurotransmission with high spatio-temporal precision. Here we present a first generation of photochromic ligands (adrenoswitches) obtained via azologization of a class of cyclic amidines related to the known ligand clonidine. Their pharmacology, photochromism, bioavailability, and lack of toxicity allow for broad biological applications, as demonstrated by controlling locomotion in zebrafish and pupillary responses in mice.


Asunto(s)
Adrenérgicos/farmacología , Compuestos Cromogénicos/farmacología , Receptores Adrenérgicos/metabolismo , Adrenérgicos/síntesis química , Adrenérgicos/química , Animales , Compuestos Cromogénicos/síntesis química , Compuestos Cromogénicos/química , Ligandos , Ratones , Ratones Desnudos , Estructura Molecular , Pez Cebra
12.
J Am Chem Soc ; 142(22): 10069-10078, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32395995

RESUMEN

One of the most appealing features of supramolecular assemblies is their ability to respond to external stimuli due to their noncovalent nature. This provides the opportunity to gain control over their size, morphology, and chemical properties and is key toward some of their applications. However, the design of supramolecular systems able to respond to multiple stimuli in a controlled fashion is still challenging. Here we report the synthesis and characterization of a novel discotic molecule, which self-assembles in water into a single-component supramolecular polymer that responds to multiple independent stimuli. The building block of such an assembly is a C3-symmetric monomer, consisting of a benzene-1,3,5-tricarboxamide core conjugated to a series of natural and non-natural functional amino acids. This design allows the use of rapid and efficient solid-phase synthesis methods and the modular implementation of different functionalities. The discotic monomer incorporates a hydrophobic azobenzene moiety, an octaethylene glycol chain, and a C-terminal lysine. Each of these blocks was chosen for two reasons: to drive the self-assembly in water by a combination of H-bonding and hydrophobicity and to impart specific responsiveness. With a combination of microscopy and spectroscopy techniques, we demonstrate self-assembly in water and responsiveness to temperature, light, pH, and ionic strength. This work shows the potential to integrate independent mechanisms for controlling self-assembly in a single-component supramolecular polymer by the rational monomer design and paves the way toward the use of multiresponsive systems in water.

13.
J Am Chem Soc ; 141(18): 7628-7636, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31010281

RESUMEN

Light-triggered reversible modulation of physiological functions offers the promise of enabling on-demand spatiotemporally controlled therapeutic interventions. Optogenetics has been successfully implemented in the heart, but significant barriers to its use in the clinic remain, such as the need for genetic transfection. Herein, we present a method to modulate cardiac function with light through a photoswitchable compound and without genetic manipulation. The molecule, named PAI, was designed by introduction of a photoswitch into the molecular structure of an M2 mAChR agonist. In vitro assays revealed that PAI enables light-dependent activation of M2 mAChRs. To validate the method, we show that PAI photoisomers display different cardiac effects in a mammalian animal model, and demonstrate reversible, real-time photocontrol of cardiac function in translucent wildtype tadpoles. PAI can also effectively activate M2 receptors using two-photon excitation with near-infrared light, which overcomes the scattering and low penetration of short-wavelength illumination, and offers new opportunities for intravital imaging and control of cardiac function.


Asunto(s)
Agonistas Muscarínicos/farmacología , Sistema Nervioso Parasimpático/efectos de los fármacos , Receptor Muscarínico M2/agonistas , Sistema Nervioso Simpático/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Frecuencia Cardíaca/efectos de los fármacos , Rayos Infrarrojos , Simulación del Acoplamiento Molecular , Estructura Molecular , Agonistas Muscarínicos/síntesis química , Agonistas Muscarínicos/química , Procesos Fotoquímicos , Ratas , Ratas Wistar , Estereoisomerismo , Relación Estructura-Actividad , Xenopus
14.
J Am Chem Soc ; 140(46): 15764-15773, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30346152

RESUMEN

The efficacy and tolerability of systemically administered anticancer agents are limited by their off-target effects. Precise spatiotemporal control over their cytotoxic activity would allow improving chemotherapy treatments, and light-regulated drugs are well suited to this purpose. We have developed phototrexate, the first photoswitchable inhibitor of the human dihydrofolate reductase (DHFR), as a photochromic analogue of methotrexate, a widely prescribed chemotherapeutic drug to treat cancer and psoriasis. Quantification of the light-regulated DHFR enzymatic activity, cell proliferation, and in vivo effects in zebrafish show that phototrexate behaves as a potent antifolate in its photoactivated cis configuration and that it is nearly inactive in its dark-relaxed trans form. Thus, phototrexate constitutes a proof-of-concept to design light-regulated cytotoxic small molecules and a step forward to develop targeted anticancer photochemotherapies with localized efficacy and reduced adverse effects.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Metotrexato/farmacología , Fotoquimioterapia , Tetrahidrofolato Deshidrogenasa/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Metotrexato/análogos & derivados , Metotrexato/química , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Relación Estructura-Actividad , Pez Cebra
15.
Chem Biodivers ; 15(9): e1800210, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29953725

RESUMEN

Alpha7 nicotinic acetylcholine receptor is emerging as a central regulator in inflammatory processes, as documented by increasing studies reported in the literature. For instance, the activation of this nicotinic receptor subtype in resident macrophages inhibits the production of pro-inflammatory cytokines, thereby attenuating local inflammatory responses, and may open a new window in the treatment of chronic inflammatory disease, such as Crohn's disease, rheumatoid arthritis, psoriasis, and asthma. In continuation of our ongoing research for the development of new cholinergic drug candidates, we selected the nicotine derivative CAP55, which was previously shown to exert anti-inflammatory effects via nicotinic stimulation, as a suitable compound for lead optimization. Through the isosteric replacement of its 3,5-disubstituted 4,5-dihydroisoxazole core with a 1,4-disubstituted 1,2,3-triazole ring, we could rapidly generate a small library of CAP55-related analogs via a one-pot copper(I)-catalyzed azide-alkyne cycloaddition. Receptor binding assays at nAChRs led to the identification of two promising derivatives, compounds 4 and 10, worthy of further pharmacological studies.


Asunto(s)
Macrófagos/metabolismo , Nicotina/análogos & derivados , Triazoles/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Sitios de Unión , Espectroscopía de Resonancia Magnética con Carbono-13 , Nicotina/química , Nicotina/farmacología , Espectroscopía de Protones por Resonancia Magnética , Receptor Nicotínico de Acetilcolina alfa 7/química
16.
Mol Pharmacol ; 91(4): 348-356, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28167741

RESUMEN

Protean agonists are of great pharmacological interest as their behavior may change in magnitude and direction depending on the constitutive activity of a receptor. Yet, this intriguing phenomenon has been poorly described and understood, due to the lack of stable experimental systems and design strategies. In this study, we overcome both limitations: First, we demonstrate that modulation of the ionic strength in a defined experimental set-up allows for analysis of G protein-coupled receptor activation in the absence and presence of a specific amount of spontaneous receptor activity using the muscarinic M2 acetylcholine receptor as a model. Second, we employ this assay system to show that a dualsteric design principle, that is, molecular probes, carrying two pharmacophores to simultaneously adopt orthosteric and allosteric topography within a G protein-coupled receptor, may represent a novel approach to achieve protean agonism. We pinpoint three molecular requirements within dualsteric compounds that elicit protean agonism at the muscarinic M2 acetylcholine receptor. Using radioligand-binding and functional assays, we posit that dynamic ligand binding may be the mechanism underlying protean agonism of dualsteric ligands. Our findings provide both new mechanistic insights into the still enigmatic phenomenon of protean agonism and a rationale for the design of such compounds for a G protein-coupled receptor.


Asunto(s)
Ingeniería de Proteínas , Receptores Acoplados a Proteínas G/agonistas , Regulación Alostérica , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Ligandos , Unión Proteica , Receptor Muscarínico M2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Trometamina
17.
J Biol Chem ; 291(31): 16375-89, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27298318

RESUMEN

G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site.


Asunto(s)
Simulación de Dinámica Molecular , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/química , Regulación Alostérica , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Ligandos , Receptor Muscarínico M2/metabolismo
18.
J Chem Inf Model ; 55(12): 2528-39, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26569022

RESUMEN

Increasing attention has recently been devoted to allosteric modulators, as they can provide inherent advantages over classic receptor agonists. In the field of nicotinic receptors (nAChRs), the main advantage is that allosteric modulators can trigger pharmacological responses, limiting receptor desensitization. Most of the known allosteric ligands are "positive allosteric modulators" (PAMs), which increase both sensitivity to receptor agonists and current amplitude. Intriguingly, some allosteric modulators are also able to activate the α7 receptor (α7-nAChR) even in the absence of orthosteric agonists. These compounds have been named "ago-allosteric modulators" and GAT107 has been studied in depth because of its unique mechanism of action. We here investigate by molecular dynamics simulations, metadynamics, and essential dynamics the activation mechanism of α7-nAChR, in the presence of different nicotinic modulators. We determine the free energy profiles associated with the closed-to-open motion of the loop C, and we highlight mechanistic differences observed in the presence of different modulators. In particular, we demonstrate that GAT107 triggers conformational motions and cross-talk similar to those observed when the α7-nACh receptor is in complex with both an agonist and an allosteric modulator.


Asunto(s)
Modelos Biológicos , Simulación de Dinámica Molecular , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Regulación Alostérica , Sitios de Unión , Humanos , Ligandos , Modelos Moleculares , Termodinámica
19.
J Comput Aided Mol Des ; 27(11): 975-87, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24276616

RESUMEN

The binding mode of nicotinic agonists has been thoroughly investigated in the last decades. It is now accepted that the charged amino group is bound by a cation-π interaction to a conserved tryptophan residue, and that the aromatic moiety is projected into a hydrophobic pocket deeply located inside the binding cleft. A hydrogen bond donor/acceptor, maybe a water molecule solvating this receptor subsite, contributes to further stabilize the nicotinic ligands. The position of this water molecule has been established by several X-ray structures of the acetylcholine-binding protein. In this study, we computationally analyzed the role of this water molecule as a putative hydrogen bond donor/acceptor moiety in the agonist binding site of the three most relevant heteromeric (α4ß2, α3ß4) and homomeric (α7) neuronal nicotinic acetylcholine receptor (nAChR) subtypes. Our theoretical investigation made use of epibatidine 1 and deschloroepibatidine 2 as molecular probes, and was then extended to their analogues 3 and 4, which were subsequently synthesized and tested at the three target receptor subtypes. Although the pharmacological data for the new ligands 3 and 4 indicated a reduction of the affinity at the studied nAChRs with respect to reference agonists, a variation of the selectivity profile was clearly evidenced.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacología , Piridinas/química , Piridinas/farmacología , Receptores Colinérgicos/metabolismo , Agua/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Sondas Moleculares/química , Datos de Secuencia Molecular , Receptores Colinérgicos/química
20.
Cells ; 12(11)2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-37296615

RESUMEN

BACKGROUND: Schwann cells (SCs) are glial cells involved in peripheral axon myelination. SCs also play a strategic role after peripheral nerve injury, regulating local inflammation and axon regeneration. Our previous studies demonstrated the presence of cholinergic receptors in SCs. In particular, the α7 nicotinic acetylcholine receptors (nAChRs) are expressed in SCs after peripheral axotomy, suggesting their involvement in the regulation of SC-regenerating properties. To clarify the role that α7 nAChRs may play after peripheral axon damage, in this study we investigated the signal transduction pathways triggered by receptor activation and the effects produced by their activation. METHODS: Both ionotropic and metabotropic cholinergic signaling were analyzed by calcium imaging and Western blot analysis, respectively, following α7 nAChR activation. In addition, the expression of c-Jun and α7 nAChRs was evaluated by immunocytochemistry and Western blot analysis. Finally, the cell migration was studied by a wound healing assay. RESULTS: Activation of α7 nAChRs, activated by the selective partial agonist ICH3, did not induce calcium mobilization but positively modulated the PI3K/AKT/mTORC1 axis. Activation of the mTORC1 complex was also supported by the up-regulated expression of its specific p-p70 S6KThr389 target. Moreover, up-regulation of p-AMPKThr172, a negative regulator of myelination, was also observed concomitantly to an increased nuclear accumulation of the transcription factor c-Jun. Cell migration and morphology analyses proved that α7 nAChR activation also promotes SC migration. CONCLUSIONS: Our data demonstrate that α7 nAChRs, expressed by SCs only after peripheral axon damage and/or in an inflammatory microenvironment, contribute to improve the SCs regenerating properties. Indeed, α7 nAChR stimulation leads to an upregulation of c-Jun expression and promotes Schwann cell migration by non-canonical pathways involving the mTORC1 activity.


Asunto(s)
Axones , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Axones/metabolismo , Calcio/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Regeneración Nerviosa , Transducción de Señal/fisiología , Células de Schwann/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA