RESUMEN
Methylsiloxanes have gained growing attention as emerging pollutants due to their toxicity to organisms. As man-made chemicals with no natural source, most research to date has focused on volatile methylsiloxanes from personal care or household products and industrial processes. Here, we show that methylsiloxanes can be found in primary aerosol particles emitted by vehicles based on aerosol samples collected in two tunnels in São Paulo, Brazil. The aerosol samples were analyzed with thermal desorption-proton transfer reaction-mass spectrometry (TD-PTR-MS), and methylsiloxanes were identified and quantified in the mass spectra based on the natural abundance of silicon isotopes. Various methylsiloxanes and derivatives were found in aerosol particles from both tunnels. The concentrations of methylsiloxanes and derivatives ranged 37.7-377 ng m-3, and the relative fractions in organic aerosols were 0.78-1.9%. The concentrations of methylsiloxanes exhibited a significant correlation with both unburned lubricating oils and organic aerosol mass. The emission factors of methylsiloxanes averaged 1.16 ± 0.59 mg kg-1 of burned fuel for light-duty vehicles and 1.53 ± 0.37 mg kg-1 for heavy-duty vehicles. Global annual emissions of methylsiloxanes in vehicle-emitted aerosols were estimated to range from 0.0035 to 0.0060 Tg, underscoring the significant yet largely unknown potential for health and climate impacts.
Asunto(s)
Contaminantes Ambientales , Emisiones de Vehículos , Humanos , Brasil , Aerosoles , ClimaRESUMEN
It has been established that various anthropogenic contaminants have already reached all the world's pristine locations, including the polar regions. While some of those contaminants, such as lead and soot, are decreasing in the environment, thanks to international regulations, other novel contaminants emerge. Plastic pollution has been shown as a durable novel pollutant, and, since recently, smaller and smaller plastics particles have been identified in various environments (air, water and soil). Considerable research already exists measuring the plastics in the 5 mm to micrometre size range (microplastics). However, far less is known about the plastics debris that fragmented to the sub-micrometre size (nanoplastics). As these small particles are light, it is expected that they have already reached the most remote places on Earth, e.g. transported across the globe by air movement. In this work, we used a novel method based on Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry (TD-PTR-MS) to detect and measure nanoplastics of different types in the water sampled from a Greenland firn core (T2015-A5) and a sea ice core from Antarctica. We identify polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), and Tire wear nanoparticles in the 14 m deep Greenland firn core and PE, PP and PET in sea ice from Antarctica. Nanoplastics mass concentrations were on average 13.2 ng/mL for Greenland firn samples and 52.3 ng/mL for Antarctic sea ice. We further discuss the possible sources of nanoplastics that we found at these remote locations, which likely involve complex processes of plastic circulation (emission from both land and sea surface, atmospheric and marine circulation).
Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Cubierta de Hielo , Plásticos/análisis , Poliestirenos , Contaminantes Químicos del Agua/análisisRESUMEN
We present a new method for chemical characterization of micro- and nanoplastics based on thermal desorption-proton transfer reaction-mass spectrometry. The detection limit for polystyrene (PS) obtained is <1 ng of the compound present in a sample, which results in 100 times better sensitivity than those of previously reported by other methods. This allows us to use small volumes of samples (1 mL) and to carry out experiments without a preconcentration step. Unique features in the high-resolution mass spectrum of different plastic polymers make this approach suitable for fingerprinting, even when the samples contain mixtures of other organic compounds. Accordingly, we got a positive fingerprint of PS when just 10 ng of the polymer was present within the dissolved organic matter of snow. Multiple types of microplastics (polyethylene terephthalate (PET), polyvinyl chloride, and polypropylene carbonate), were identified in a snowpit from the Austrian Alps; however, only PET was detected in the nanometer range for both snowpit and surface snow samples. This is in accordance with other publications showing that the dominant form of airborne microplastics is PET fibers. The presence of nanoplastics in high-altitude snow indicates airborne transport of plastic pollution with environmental and health consequences yet to be understood.
Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Austria , Monitoreo del Ambiente , NieveRESUMEN
Anaerobic gas production tests, generically Biochemical Methane Potential (BMP) or Biogas Potential (BP) tests, are often used to assess biodegradability, though long duration limits their utility. This research investigated whether simple modelling approaches could provide a reliable earlier prediction of total biogas production. Data were assessed from a non-automated biogas test on a large number of both fresh and processed municipal solid waste (MSW) samples, sourced from a mechanical biological treatment (MBT) plant. Non-linear models of biogas production curves were useful in identifying a suitable test endpoint, supporting a test duration of 50 days. Biogas production at 50 days (B50) was predicted using the first 14 days of test data, using (a) linear correlation, (b) a new linearisation process, and (c) non-linear kinetic models. Prediction errors were quantified as relative root mean squared error of prediction (rRMSEP), and bias. Predictions from most models were improved by removing the initial exponential increase phase. Linear correlation gave the most precise and accurate predictions at 14 days (rRMSEPâ¯=â¯2.8%, bias under 0.05%) and allowed acceptable prediction (rRMSEP <10%) both at 8 days, and at 6 days using separate correlations for each sample type. Of the other predictions, the new linearisation process gave the lowest rRMSEP (10.6%) at 14 days. More complex non-linear models conferred no advantage in prediction of B50. These results demonstrate that early prediction of anaerobic gas production is possible for a well-optimised test, using only basic equipment and without recourse to external data sources or complex mathematical modelling.
Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Anaerobiosis , Biocombustibles , Reactores Biológicos , Cinética , MetanoRESUMEN
Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection <1 pptv and the response times of approximately 100 ms), the selectivity of PTR-MS is still somewhat limited, as isomers cannot be separated. Recently, selectivity-enhancing measures, such as manipulation of drift tube parameters (reduced electric field strength) and using primary ions other than H3O(+), such as NO(+) and O2 (+), have been introduced. However, monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and ß-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.
Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Monoterpenos/análisis , Picea/química , Pinus/química , Compuestos Orgánicos Volátiles/análisis , Monoterpenos Acíclicos , Alquenos/análisis , Alquenos/aislamiento & purificación , Monoterpenos Bicíclicos , Compuestos Bicíclicos con Puentes/análisis , Compuestos Bicíclicos con Puentes/aislamiento & purificación , Monoterpenos/aislamiento & purificación , Protones , Compuestos Orgánicos Volátiles/aislamiento & purificación , VolatilizaciónRESUMEN
In this perspective paper, we discuss the negative impacts of plastics and associated chemicals on the triple planetary crisis of environmental pollution, climate change and biodiversity loss from a multidisciplinary perspective. Plastics are part of the pollution crisis, threatening ecosystems and human health. They also impact climate change and accelerate biodiversity loss; in this, they aggravate the triple planetary crisis. We analyze the scientific state-of-the-art to identify critical knowledge gaps regarding the life cycle, release, fate, exposure, hazard and governance of plastics and associated chemicals, as well as links to climate change and biodiversity loss. Based on the outcome, we derive key research needs for a comprehensive hazard assessment of plastics and associated chemicals, amongst others, to address the largely missing regulation of plastic additives and in-use plastics. We offer a holistic perspective bridging disciplinary expertise from natural and social sciences to achieve effective plastic governance and risk management of plastics and associated chemicals that protect the Earth, its ecosystems and human health from the plastics crisis.
RESUMEN
We report atmospheric fine micro- and nanoplastics concentrations from particulate matter (PM) samples of two size fractions (PM10, fine micro- and nanoplastics, and PM1, nanoplastics), which were collected at the remote high alpine station Sonnblick Observatory, Austria. Active sampling was performed from June 2021 until April 2022. Analysis was done using TD-PTR-MS to detect 6 different plastic types. Polyethylene terephthalate (PET), polyethylene (PE) and polypropylene/polypropylene carbonate (PP/PPC) were found to be the dominating species. PET was detected in almost all samples, while the other plastic types occurred more episodically. Furthermore, polyvinyl chloride (PVC), polystyrene (PS) and tire wear particles were detected in single samples. Considering the three main plastic types, average plastics concentrations were 35 and 21 ng m-³ with maximum concentrations of 165 and 113 ng m-³ for PM10 and PM1, respectively. Average polymer concentrations were higher in the summer/fall period than in winter/spring. In summer/fall, PM10 plastics concentrations were higher by a factor of 2 compared to PM1, while concentrations of both size classes were comparable in the winter/spring period. This suggests that in the colder season plastic particles arriving at the Eastern Alpine crests are mainly present as nanoplastics. The contribution of micro- and nanoplastics to organic matter at the remote site was found to be comparable to data determined at an urban site. We found significant correlations between the PET concentration and tracers originating from anthropogenic activities such as elemental carbon, nitrate, ammonium, and sulphate as well as organic carbon and arabitol.
Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Polipropilenos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Microplásticos/análisis , Tamaño de la Partícula , Austria , Monitoreo del Ambiente , Carbono/análisis , Plásticos/análisisRESUMEN
Plastic pollution in the marine environment has been identified as a global problem; different polymer types and fragment sizes have been detected across all marine regions, from sea ice to the equator and the surface to the deep sea. However, quantification of marine plastics debris in the size range of nanoplastics (<1 µm) and ultrafine microplastics (<10 µm) is not constrained, because such minuscule particles are challenging to measure. In this work, we applied a novel analytical assay using Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry (TD-PTR-MS), which is suitable to detect and identify plastics in the nanogram range. From two stations in the Wadden Sea (the Netherlands), we measured nanoplastics directly from seawater aliquots, and from filters with different mesh sizes. Our results show the presence of Polystyrene (PS) and Polyethylene terephthalate (PET) nanopalstics as well as ultrafine microplastics in the Wadden Sea water column. The mass concentration of PS nanoplastics was 4.2 µg/L on average, indicating a substantial contribution of nanoplastics to the Wadden Sea's total plastic budget.
Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Microplásticos , Océanos y Mares , Poliestirenos , Contaminantes Químicos del Agua/análisisRESUMEN
The chemical and stable carbon isotopic composition of the organic aerosol particles (OA) emitted by a shuttle passenger ship between mainland Naples and island Capri in Italy were investigated. Various methylsiloxanes and derivatives were found in particulate ship emissions for the first time, as identified in the mass spectra of a thermal desorption - proton transfer reaction - mass spectrometer (TD-PTR-MS) based on the natural abundance of silicon isotopes. Large contributions of methylsiloxanes to OA (up to 59.3%) were found under inefficient combustion conditions, and considerably lower methylsiloxane emissions were observed under cruise conditions (1.2% of OA). Furthermore, the stable carbon isotopic composition can provide a fingerprint for methylsiloxanes, as they have low δ13C values in the range of -44.91 ± 4.29. The occurrence of methylsiloxanes was therefore further supported by low δ13C values of particulate organic carbon (OC), ranging from -34.7 to -39.4, when carbon fractions of methylsiloxanes in OC were high. The δ13C values of OC increased up to around -26.7 under cruise conditions, when carbon fractions of methylsiloxanes in OC were low. Overall, the δ13C value of OC decreased linearly with increasing carbon fraction of methylsiloxanes in OC, and the slope is consistent with a mixture of methylsiloxanes and fuel combustion products. The methylsiloxanes in ship emissions may come from engine lubricants.
Asunto(s)
Material Particulado , Navíos , Aerosoles/análisis , Carbono/análisis , Isótopos de Carbono/análisis , Polvo , Monitoreo del Ambiente , Material Particulado/análisisRESUMEN
The aim of this study was to investigate volatile organic compounds (VOCs) in exhaled breath as possible non-invasive markers to monitor the inflammatory response in inflammatory bowel disease (IBD) patients as a result of repeated and prolonged moderate-intensity exercise. We included 18 IBD patients and 19 non-IBD individuals who each completed a 30, 40, or 50 km walking exercise over three consecutive days. Breath and blood samples were taken before the start of the exercise event and every day post-exercise to assess changes in the VOC profiles and cytokine concentrations. Proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) was used to measure exhaled breath VOCs. Multivariate analysis, particularly ANOVA-simultaneous component analysis (ASCA), was employed to extract relevant ions related to exercise and IBD. Prolonged exercise induces a similar response in breath butanoic acid and plasma cytokines for participants with or without IBD. Butanoic acid showed a significant correlation with the cytokine IL-6, indicating that butanoic acid could be a potential non-invasive marker for exercise-induced inflammation. The findings are relevant in monitoring personalized IBD management.
RESUMEN
Plastic materials are increasingly produced worldwide with a total estimated production of >8300 million tonnes to date, of which 60% was discarded. In the environment, plastics fragment into smaller particles, e.g. microplastics (size < 5 mm), and further weathering leads to the formation of functionally different contaminants - nanoplastics (size <1 µm). Nanoplastics are believed to have entirely different physical (e.g. transport), chemical (e.g. functional groups at the surface) and biological (passing the cell membrane, toxicity) properties compared to the micro- and macroplastics, yet, their measurement in the environmental samples is seldom available. Here, we present measurements of nanoplastics mass concentration and calculated the deposition at the pristine high-altitude Alpine Sonnblick observatory (3106 MASL), during the 1.5 month campaigh in late winter 2017. The average nanoplastics concentration was 46.5 ng/mL of melted surface snow. The main polymer types of nanoplastics observed for this site were polypropylene (PP) and polyethylene terephthalate (PET). We measured significantly higher concentrations in the dry sampling periods for PET (p < 0.002) but not for PP, which indicates that dry deposition may be the preferential pathway for PET leading to a gradual accumulation on the snow surfaces during dry periods. Air transport modelling indicates regional and long-range transport of nanoplastics, originating preferentially from European urban areas. The mean deposition rate was 42 (+32/-25) kg km-2 year-1. Thus more than 2 × 1011 nanoplastics particles are deposited per square meter of surface snow each week of the observed period, even at this remote location, which raises significant toxicological concerns.
Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Altitud , Plásticos , Nieve , Contaminantes Químicos del Agua/análisisRESUMEN
Volatile organic compounds (VOCs) in exhaled breath provide insights into various metabolic processes and can be used to monitor physiological response to exercise and medication. We integrated and validated in situ a sampling and analysis protocol using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for exhaled breath research. The approach was demonstrated on a participant cohort comprising users of the cholesterol-lowering drug statins and non-statin users during a field campaign of three days of prolonged and repeated exercise, with no restrictions on food or drink consumption. The effect of prolonged exercise was reflected in the exhaled breath of participants, and relevant VOCs were identified. Most of the VOCs, such as acetone, showed an increase in concentration after the first day of walking and subsequent decrease towards baseline levels prior to walking on the second day. A cluster of short-chain fatty acids including acetic acid, butanoic acid, and propionic acid were identified in exhaled breath as potential indicators of gut microbiota activity relating to exercise and drug use. We have provided novel information regarding the use of breathomics for non-invasive monitoring of changes in human metabolism and especially for the gut microbiome activity in relation to exercise and the use of medication, such as statins.
RESUMEN
Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. PTR-MS is used for various environmental applications including monitoring of volatile organic compounds (VOCs) emitted from natural and anthropogenic sources, chemical composition measurements of aerosols, etc. Here we apply thermal desorption PTR-MS for the first time to characterise the chemical composition of dissolved organic matter (DOM). We developed a clean, low-pressure evaporation/sublimation system to remove water from samples and coupled it to a custom-made thermal desorption unit to introduce the samples to the PTR-MS. Using this system, we analysed waters from intact and degraded peat swamp forest of Kalimantan, Indonesian Borneo, and an oil palm plantation and natural forest in Sarawak, Malaysian Borneo. We detected more than 200 organic ions from these samples and principal component analysis allowed clear separation of the different sample origins based on the composition of organic compounds. The method is sensitive, reproducible, and provides a new and comparatively cheap tool for a rapid characterisation of water and soil DOM.
RESUMEN
Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant-plant and plant-insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies.