Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Vet Sci ; 11: 1374677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645643

RESUMEN

Apex predators are exposed to antimicrobial compounds and resistant microbes, which accumulate at different trophic levels of the related ecosystems. The study aimed to characterize the presence and the antimicrobial resistance patterns of fecal Escherichia coli isolated from cloacal swab samples obtained from wild-living American crocodiles (Crocodylus acutus) (n = 53). Sampling was conducted within the distinctive context of a freshwater-intensive aquaculture farm in Costa Rica, where incoming crocodiles are temporarily held in captivity before release. Phenotypic antimicrobial susceptibility profiles were determined in all isolates, while resistant isolates were subjected to whole-genome sequencing and bioinformatics analyses. In total, 24 samples contained tetracycline-resistant E. coli (45.3%). Isolates carried either tet(A), tet(B), or tet(C) genes. Furthermore, genes conferring resistance to ß-lactams, aminoglycosides, fosfomycin, sulfonamides, phenicol, quinolones, trimethoprim, and colistin were detected in single isolates, with seven of them carrying these genes on plasmids. Genome sequencing further revealed that sequence types, prevalence of antibiotic resistance carriage, and antibiotic resistance profiles differed between the individuals liberated within the next 24 h after their capture in the ponds and those liberated from enclosures after longer abodes. The overall presence of tetracycline-resistant E. coli, coupled with potential interactions with various anthropogenic factors before arriving at the facilities, hinders clear conclusions on the sources of antimicrobial resistance for the studied individuals. These aspects hold significant implications for both the aquaculture farm's biosecurity and the planning of environmental monitoring programs using such specimens. Considering human-crocodile conflicts from the One Health perspective, the occurrence of antimicrobial resistance underscores the importance of systematical surveillance of antibiotic resistance development in American crocodiles.

2.
Front Vet Sci ; 11: 1445413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109350

RESUMEN

Introduction: Data regarding the occurrence and virulence of Staphylococcus (S.) aureus in wild living animals is rare. However, S. aureus may carry a multitude of virulence factors and express resistance to several antimicrobial substances. Handling game meat may thus lead to serious infections or food poisoning. The aim of this study was to provide insights into the occurrence and characteristics of S. aureus in wild ungulates from Brandenburg, Germany. Methods: Nasal swabs of externally healthy-looking wild boars, roe, fallow and red deer were collected in hunts during season 2021/2022 and analyzed for S. aureus by selective enrichment. Species were determined using matrix assisted laser desorption ionization mass spectrometry and tested for phenotypic antimicrobial resistance. Whole-genome sequencing was conducted for genotyping, determination of virulence associated genes and analysis of phylogenetic relationships. Results: S. aureus were recovered from approximately 8% of nasal swabs. However, the strains were only obtained from the sampled wild ruminants. S. aureus isolates were associated with sequence types (ST) 1, ST30, ST133, ST425, ST582 and ST6238. Isolates of ST1 clustered closely together in the phylogenetic analysis. Genes encoding staphylococcal enterotoxin (SE) or SE-like (SEl) were found in 14/17 isolates. In particular, a seh gene was present in 12/17 isolates. Moreover, two isolates harbored a multiplicity of genes encoding SE or SEl. In addition, the toxic shock syndrome toxin encoding tst gene was detected in one isolate. This isolate was resistant to penicillin and cefoxitin and accordingly harbored the blaZ gene. Discussion: Wild ungulates intended for human consumption may carry potentially virulent S. aureus. In one case, the close phylogenetic relationship of S. aureus isolates indicates a possible intraspecific spread within a common territory. However, for others, the origin or the spread pattern can only be inferred. Handling of animals or their carcasses might contribute to staphylococcal infections in humans. Moreover, food poisoning due to SE producing strains may occur, if recommended hygiene practices are not applied during processing of game meat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA