Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 159(7): 1615-25, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25525879

RESUMEN

Sirtuins (SIRTs) are critical enzymes that govern genome regulation, metabolism, and aging. Despite conserved deacetylase domains, mitochondrial SIRT4 and SIRT5 have little to no deacetylase activity, and a robust catalytic activity for SIRT4 has been elusive. Here, we establish SIRT4 as a cellular lipoamidase that regulates the pyruvate dehydrogenase complex (PDH). Importantly, SIRT4 catalytic efficiency for lipoyl- and biotinyl-lysine modifications is superior to its deacetylation activity. PDH, which converts pyruvate to acetyl-CoA, has been known to be primarily regulated by phosphorylation of its E1 component. We determine that SIRT4 enzymatically hydrolyzes the lipoamide cofactors from the E2 component dihydrolipoyllysine acetyltransferase (DLAT), diminishing PDH activity. We demonstrate SIRT4-mediated regulation of DLAT lipoyl levels and PDH activity in cells and in vivo, in mouse liver. Furthermore, metabolic flux switching via glutamine stimulation induces SIRT4 lipoamidase activity to inhibit PDH, highlighting SIRT4 as a guardian of cellular metabolism.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Sirtuinas/metabolismo , Amidohidrolasas/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Glutamina/metabolismo , Humanos , Hígado/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Ratas , Sirtuinas/genética , Ácido Tióctico/análogos & derivados , Ácido Tióctico/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(4): e2317452121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38236729

RESUMEN

Bacterial flagella and type IV pili (TFP) are surface appendages that enable motility and mechanosensing through distinct mechanisms. These structures were previously thought to have no components in common. Here, we report that TFP and some flagella share proteins PilO, PilN, and PilM, which we identified as part of the Helicobacter pylori flagellar motor. H. pylori mutants lacking PilO or PilN migrated better than wild type in semisolid agar because they continued swimming rather than aggregated into microcolonies, mimicking the TFP-regulated surface response. Like their TFP homologs, flagellar PilO/PilN heterodimers formed a peripheral cage that encircled the flagellar motor. These results indicate that PilO and PilN act similarly in flagella and TFP by differentially regulating motility and microcolony formation when bacteria encounter surfaces.


Asunto(s)
Proteínas Bacterianas , Fimbrias Bacterianas , Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Bacterias , Flagelos/fisiología
3.
Int J Mol Sci ; 23(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35628580

RESUMEN

Over 50% of the world's population is infected with Human Cytomegalovirus (HCMV). HCMV is responsible for serious complications in the immuno-compromised and is a leading cause of congenital birth defects. The molecular function of many HCMV proteins remains unknown, and a deeper understanding of the viral effectors that modulate virion maturation is required. In this study, we observed that UL34 is a viral protein expressed with leaky late kinetics that localises to the nucleus during infection. Deletion of UL34 from the HCMV genome (ΔUL34) did not abolish the spread of HCMV. Instead, over >100-fold fewer infectious virions were produced, so we report that UL34 is an augmenting gene. We found that ΔUL34 is dispensable for viral DNA replication, and its absence did not alter the expression of IE1, MCP, gB, UL26, UL83, or UL99 proteins. In addition, ΔUL34 infections were able to progress through the replication cycle to form a viral assembly compartment; however, virion maturation in the cytoplasm was abrogated. Further examination of the nucleus in ΔUL34 infections revealed replication compartments with aberrant morphology, containing significantly less assembled capsids, with almost none undergoing subsequent maturation. Therefore, this work lays the foundation for UL34 to be further investigated in the context of nuclear organization and capsid maturation during HCMV infection.


Asunto(s)
Cápside , Citomegalovirus , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Citomegalovirus/genética , Citomegalovirus/metabolismo , Replicación del ADN , ADN Viral/metabolismo , Humanos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
4.
Semin Cell Dev Biol ; 67: 91-100, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28456604

RESUMEN

Herpesviruses are remarkable pathogens possessing elaborate mechanisms to seize various host cellular components for immune evasion, replication, and virion egress. As viruses are dependent upon their hosts, investigating this intricate interplay has revealed that the exosome pathway is utilised by alpha (Herpes Simplex Virus 1), beta (Human Cytomegalovirus, and Human Herpesvirus 6) and gamma (Epstein-Barr Virus, and Kaposi Sarcoma-associated Herpesvirus) herpesviruses. Virions and exosomes share similar properties and functions. For example, exosomes are small membranous nanovesicles (30-150nm) released from cells that contain proteins, DNA, and various coding and non-coding RNA species. Given exosomes can shuttle various molecular cargo from a donor to recipient cell, they serve as important vehicles facilitating cell-cell communication. Therefore, exploitation by herpesviruses impacts several aspects of infection including: i) acquisition of molecular machinery for secondary envelopment and viral assembly, ii) export of immune-related host proteins from infected cells, iii) enhancing infection in surrounding cells via transfer of viral proteins, mRNA and miRNA, and iv) regulation of viral protein expression to promote persistence. Studying the dichotomy that exists between host exosomes and herpesviruses has two benefits. Firstly, it will reveal the precise pathogenic mechanisms viruses have evolved, generating knowledge for antiviral development. Secondly, it will shed light upon fundamental exosome characteristics that remain unknown, including cargo selection, protein trafficking, and non-canonical biogenesis.


Asunto(s)
Exosomas/virología , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/inmunología , Herpesviridae/patogenicidad , Proteínas Virales/genética , Virión/patogenicidad , Animales , Células Dendríticas/inmunología , Células Dendríticas/virología , Exosomas/inmunología , Herpesviridae/genética , Herpesviridae/crecimiento & desarrollo , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Humanos , Evasión Inmune , Linfocitos/inmunología , Linfocitos/virología , MicroARNs/genética , MicroARNs/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Virión/genética , Virión/crecimiento & desarrollo
5.
Biochem J ; 474(1): 21-45, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28008089

RESUMEN

Cell-cell communication is critical across an assortment of physiological and pathological processes. Extracellular vesicles (EVs) represent an integral facet of intercellular communication largely through the transfer of functional cargo such as proteins, messenger RNAs (mRNAs), microRNA (miRNAs), DNAs and lipids. EVs, especially exosomes and shed microvesicles, represent an important delivery medium in the tumour micro-environment through the reciprocal dissemination of signals between cancer and resident stromal cells to facilitate tumorigenesis and metastasis. An important step of the metastatic cascade is the reprogramming of cancer cells from an epithelial to mesenchymal phenotype (epithelial-mesenchymal transition, EMT), which is associated with increased aggressiveness, invasiveness and metastatic potential. There is now increasing evidence demonstrating that EVs released by cells undergoing EMT are reprogrammed (protein and RNA content) during this process. This review summarises current knowledge of EV-mediated functional transfer of proteins and RNA species (mRNA, miRNA, long non-coding RNA) between cells in cancer biology and the EMT process. An in-depth understanding of EVs associated with EMT, with emphasis on molecular composition (proteins and RNA species), will provide fundamental insights into cancer biology.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , ADN de Neoplasias/metabolismo , Transición Epitelial-Mesenquimal , Lípidos , Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Animales , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/patología , ADN de Neoplasias/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Neoplasias/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética
6.
Semin Cell Dev Biol ; 40: 60-71, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25721809

RESUMEN

Epithelial-mesenchymal transition (EMT) is a highly conserved process defined by the loss of epithelial characteristics, and acquisition of the mesenchymal phenotype. In addition to its central role in development, EMT has been implicated as a cellular process during tumourigenesis which facilitates tumour cell invasion and metastasis. The EMT process has been largely defined by signal transduction networks and transcriptional factors that activate mesenchymal-associated gene expression. Knowledge of secretome components that influence EMT including secreted proteins/peptides and membrane-derived extracellular vesicles (EVs) (i.e., exosomes) has emerged. Here we review EV cargo associated with inducing the hallmarks of EMT and cancer progression, modulators of cell transformation, invasion/migration, angiogenesis, and components involved in establishing the metastatic niche.


Asunto(s)
Transición Epitelial-Mesenquimal , Exosomas/metabolismo , Neoplasias/patología , Animales , Transformación Celular Neoplásica , Humanos , Neoplasias/metabolismo
7.
Mol Cell Proteomics ; 14(3): 456-70, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25616866

RESUMEN

Class IIa histone deacetylases (HDACs4, -5, -7, and -9) modulate the physiology of the human cardiovascular, musculoskeletal, nervous, and immune systems. The regulatory capacity of this family of enzymes stems from their ability to shuttle between nuclear and cytoplasmic compartments in response to signal-driven post-translational modification. Here, we review the current knowledge of modifications that control spatial and temporal histone deacetylase functions by regulating subcellular localization, transcriptional functions, and cell cycle-dependent activity, ultimately impacting on human disease. We discuss the contribution of these modifications to cardiac and vascular hypertrophy, myoblast differentiation, neuronal cell survival, and neurodegenerative disorders.


Asunto(s)
Histona Desacetilasas/metabolismo , Procesamiento Proteico-Postraduccional , Humanos , Desarrollo de Músculos , Neuronas/enzimología , Osteogénesis , Proteínas Represoras/metabolismo
8.
Mol Cell Proteomics ; 12(3): 587-98, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23230278

RESUMEN

Exosomes are naturally occurring biological nanomembranous vesicles (∼40 to 100 nm) of endocytic origin that are released from diverse cell types into the extracellular space. They have pleiotropic functions such as antigen presentation and intercellular transfer of protein cargo, mRNA, microRNA, lipids, and oncogenic potential. Here we describe the isolation, via sequential immunocapture using anti-A33- and anti-EpCAM-coupled magnetic beads, of two distinct populations of exosomes released from organoids derived from human colon carcinoma cell line LIM1863. The exosome populations (A33-Exos and EpCAM-Exos) could not be distinguished via electron microscopy and contained stereotypical exosome markers such as TSG101, Alix, and HSP70. The salient finding of this study, revealed via gel-based LC-MS/MS, was the exclusive identification in EpCAM-Exos of the classical apical trafficking molecules CD63 (LAMP3), mucin 13 and the apical intestinal enzyme sucrase isomaltase and increased expression of dipeptidyl peptidase IV and the apically restricted pentaspan membrane glycoprotein prominin 1. In contrast, the A33-Exos preparation was enriched with basolateral trafficking molecules such as early endosome antigen 1, the Golgi membrane protein ADP-ribosylation factor, and clathrin. Our observations are consistent with EpCAM- and A33-Exos being released from the apical and basolateral surfaces, respectively, and the EpCAM-Exos proteome profile with widely published stereotypical exosomes. A proteome analysis of LIM1863-derived shed microvesicles (sMVs) was also performed in order to clearly distinguish A33- and EpCAM-Exos from sMVs. Intriguingly, several members of the MHC class I family of antigen presentation molecules were exclusively observed in A33-Exos, whereas neither MHC class I nor MHC class II molecules were observed via MS in EpCAM-Exos. Additionally, we report for the first time in any extracellular vesicle study the colocalization of EpCAM, claudin-7, and CD44 in EpCAM-Exos. Given that these molecules are known to complex together to promote tumor progression, further characterization of exosome subpopulations will enable a deeper understanding of their possible role in regulation of the tumor microenvironment.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/metabolismo , Exosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Organoides/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Micropartículas Derivadas de Células/clasificación , Micropartículas Derivadas de Células/metabolismo , Cromatografía Liquida , Claudinas/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Molécula de Adhesión Celular Epitelial , Exosomas/clasificación , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem , Factores de Transcripción/metabolismo
9.
Mol Cell Proteomics ; 12(8): 2148-59, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23645497

RESUMEN

Epithelial-mesenchymal transition (EMT) is a highly conserved morphogenic process defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. EMT is associated with increased aggressiveness, invasiveness, and metastatic potential in carcinoma cells. To assess the contribution of extracellular vesicles following EMT, we conducted a proteomic analysis of exosomes released from Madin-Darby canine kidney (MDCK) cells, and MDCK cells transformed with oncogenic H-Ras (21D1 cells). Exosomes are 40-100 nm membranous vesicles originating from the inward budding of late endosomes and multivesicular bodies and are released from cells on fusion of multivesicular bodies with the plasma membrane. Exosomes from MDCK cells (MDCK-Exos) and 21D1 cells (21D1-Exos) were purified from cell culture media using density gradient centrifugation (OptiPrep™), and protein content identified by GeLC-MS/MS proteomic profiling. Both MDCK- and 21D1-Exos populations were morphologically similar by cryo-electron microscopy and contained stereotypical exosome marker proteins such as TSG101, Alix, and CD63. In this study we show that the expression levels of typical EMT hallmark proteins seen in whole cells correlate with those observed in MDCK- and 21D1-Exos, i.e. reduction of characteristic inhibitor of angiogenesis, thrombospondin-1, and epithelial markers E-cadherin, and EpCAM, with a concomitant up-regulation of mesenchymal makers such as vimentin. Further, we reveal that 21D1-Exos are enriched with several proteases (e.g. MMP-1, -14, -19, ADAM-10, and ADAMTS1), and integrins (e.g. ITGB1, ITGA3, and ITGA6) that have been recently implicated in regulating the tumor microenvironment to promote metastatic progression. A salient finding of this study was the unique presence of key transcriptional regulators (e.g. the master transcriptional regulator YBX1) and core splicing complex components (e.g. SF3B1, SF3B3, and SFRS1) in mesenchymal 21D1-Exos. Taken together, our findings reveal that exosomes from Ras-transformed MDCK cells are reprogrammed with factors which may be capable of inducing EMT in recipient cells.


Asunto(s)
Transición Epitelial-Mesenquimal , Exosomas/metabolismo , Proteínas ras/metabolismo , Animales , Anexinas/metabolismo , Transformación Celular Neoplásica/metabolismo , Perros , Genes ras , Integrinas/metabolismo , Células de Riñón Canino Madin Darby , Péptido Hidrolasas/metabolismo , Proteoma , Tetraspaninas/metabolismo
10.
Proteomics ; 14(19): 2156-66, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24920159

RESUMEN

Class IIa histone deacetylases (HDACs) are critical transcriptional regulators, shuttling between nuclear and cytoplasmic cellular compartments. Within the nucleus, these HDACs repress transcription as components of multiprotein complexes, such as the nuclear corepressor and beclin-6 corepressor (BCoR) complexes. Cytoplasmic relocalization relieves this transcriptional repressive function. Class IIa HDAC shuttling is controlled, in part, by phosphorylations flanking the nuclear localization signal (NLS). Furthermore, we have reported that phosphorylation within the NLS by the kinase Aurora B modulates the localization and function of the class IIa HDAC5 during mitosis. While we identified numerous additional HDAC5 phosphorylations, their regulatory functions remain unknown. Here, we studied phosphorylation sites within functional HDAC5 domains, including the deacetylation domain (DAC, Ser755), nuclear export signal (NES, Ser1108), and an acidic domain (AD, Ser611). We have generated phosphomutant cell lines to investigate how absence of phosphorylation at these sites impacts HDAC5 localization, enzymatic activity, and protein interactions. Combining molecular biology and quantitative MS, we have defined the interactions and HDAC5-containing complexes mediated by site-specific phosphorylation and quantified selected changes using parallel reaction monitoring. These results expand the current understanding of HDAC regulation, and the functions of this critical family of proteins within human cells.


Asunto(s)
Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Mapas de Interacción de Proteínas/fisiología , Secuencia de Aminoácidos , Línea Celular , Humanos , Factores de Transcripción MEF2/química , Factores de Transcripción MEF2/metabolismo , Datos de Secuencia Molecular , Fosforilación , Estructura Terciaria de Proteína , Alineación de Secuencia
11.
Methods ; 56(2): 293-304, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22285593

RESUMEN

Exosomes are 40-100nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of oncogenic proteins as well as mRNA and miRNA. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. However, all preparations invariably contain varying proportions of other membranous vesicles that co-purify with exosomes such as shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, in this study we performed a comprehensive evaluation of current methods used for exosome isolation including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM coated magnetic beads (IAC-Exos). Notably, all isolations contained 40-100nm vesicles, and were positive for exosome markers (Alix, TSG101, HSP70) based on electron microscopy and Western blotting. We employed a proteomic approach to profile the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, we found IAC-Exos to be the most effective method to isolate exosomes. For example, Alix, TSG101, CD9 and CD81 were significantly higher (at least 2-fold) in IAC-Exos, compared to UG-Exos and DG-Exos. Application of immunoaffinity capture has enabled the identification of proteins including the ESCRT-III component VPS32C/CHMP4C, and the SNARE synaptobrevin 2 (VAMP2) in exosomes for the first time. Additionally, several cancer-related proteins were identified in IAC-Exos including various ephrins (EFNB1, EFNB2) and Eph receptors (EPHA2-8, EPHB1-4), and components involved in Wnt (CTNNB1, TNIK) and Ras (CRK, GRB2) signalling.


Asunto(s)
Centrifugación por Gradiente de Densidad/métodos , Exosomas/química , Inmunoensayo/métodos , Proteómica/métodos , Ultracentrifugación/métodos , Biomarcadores/química , Western Blotting , Línea Celular Tumoral , Medios de Cultivo/química , Bases de Datos de Proteínas , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Exosomas/ultraestructura , Humanos , Microscopía Electrónica , Transporte de Proteínas , Proteoma/análisis , Proteoma/química
12.
Mol Cell Proteomics ; 10(2): M110.001131, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20511395

RESUMEN

Epithelial-mesenchymal transition (EMT) describes a process whereby polarized epithelial cells with restricted migration transform into elongated spindle-shaped mesenchymal cells with enhanced motility and invasiveness. Although there are some molecular markers for this process, including the down-regulation of E-cadherin, our understanding of plasma membrane (PM) and associated proteins involved in EMT is limited. To specifically explore molecular alterations occurring at the PM, we used the cationic colloidal silica isolation technique to purify PM fractions from epithelial Madin-Darby canine kidney cells during Ras/TGF-ß-mediated EMT. Proteins in the isolated membrane fractions were separated by one-dimensional SDS-PAGE and subjected to nano-LC-MS/MS-based protein identification. In this study, the first membrane protein analysis of an EMT model, we identified 805 proteins and determined their differential expression using label-free spectral counting. These data reveal that Madin-Darby canine kidney cells switch from cadherin-mediated to integrin-mediated adhesion following Ras/TGF-ß-mediated EMT. Thus, during the EMT process, E-cadherin, claudin 4, desmoplakin, desmoglein-2, and junctional adhesion molecule A were down-regulated, whereas integrins α6ß1, α3ß1, α2ß1, α5ß1, αVß1, and αVß3 along with their extracellular ligands collagens I and V and fibronectin had increased expression levels. Conspicuously, Wnt-5a expression was elevated in cells undergoing EMT, and transient Wnt-5a siRNA silencing attenuated both cell migration and invasion in these cells. Furthermore, Wnt-5a expression suppressed canonical Wnt signaling induced by Wnt-3a. Wnt-5a may act through the planar cell polarity pathway of the non-canonical Wnt signaling pathway as several of the components and modulators (Wnt-5a, -5b, frizzled 6, collagen triple helix repeat-containing protein 1, tyrosine-protein kinase 7, RhoA, Rac, and JNK) were found to be up-regulated during Ras/TGF-ß-mediated EMT.


Asunto(s)
Membrana Celular/metabolismo , Epitelio/metabolismo , Riñón/metabolismo , Mesodermo/metabolismo , Proteómica/métodos , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Proteínas ras/metabolismo , Animales , Movimiento Celular , Cromatografía Liquida/métodos , Coloides/química , Perros , Espectrometría de Masas/métodos , Microscopía Fluorescente/métodos , Proteoma , Transducción de Señal
13.
Front Immunol ; 14: 1107497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845106

RESUMEN

Introduction: The antigen presentation molecule MHC class I related protein-1 (MR1) is best characterized by its ability to present bacterially derived metabolites of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells). Methods: Through in vitro human cytomegalovirus (HCMV) infection in the presence of MR1 ligand we investigate the modulation of MR1 expression. Using coimmunoprecipitation, mass spectrometry, expression by recombinant adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its family members as potential regulators of MR1 expression. The functional consequences of MR1 modulation by HCMV infection are explored in coculture activation assays with either Jurkat cells engineered to express the MAIT cell TCR or primary MAIT cells. MR1 dependence in these activation assays is established by addition of MR1 neutralizing antibody and CRISPR/Cas-9 mediated MR1 knockout. Results: Here we demonstrate that HCMV infection efficiently suppresses MR1 surface expression and reduces total MR1 protein levels. Expression of the viral glycoprotein gpUS9 in isolation could reduce both cell surface and total MR1 levels, with analysis of a specific US9 HCMV deletion mutant suggesting that the virus can target MR1 using multiple mechanisms. Functional assays with primary MAIT cells demonstrated the ability of HCMV infection to inhibit bacterially driven, MR1-dependent activation using both neutralizing antibodies and engineered MR1 knockout cells. Discussion: This study identifies a strategy encoded by HCMV to disrupt the MR1:MAIT cell axis. This immune axis is less well characterized in the context of viral infection. HCMV encodes hundreds of proteins, some of which regulate the expression of antigen presentation molecules. However the ability of this virus to regulate the MR1:MAIT TCR axis has not been studied in detail.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Humanos , Antígenos de Histocompatibilidad Clase I , Citomegalovirus/metabolismo , Antígenos de Histocompatibilidad Menor , Receptores de Antígenos de Linfocitos T/metabolismo
14.
Electrophoresis ; 33(12): 1873-80, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22740476

RESUMEN

Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene are common in both inherited and sporadic forms of colorectal cancer (CRC), and are associated with dysregulated Wnt signaling. Colon carcinoma SW480 cells restored with stable expression of wild-type APC (SW480APC cells) exhibit attenuated Wnt signaling, and reduced tumorigenicity, including increased cell adhesion. We performed a comparative proteomic analysis of exosomes isolated from SW480 and SW480APC cells to examine the effects of restored APC on exosome protein expression. A salient finding of our study was the unique expression of the Wnt antagonist Dickkopf-related protein 4 (DKK4) in SW480APC, but not parental SW480 cell-derived exosomes. Upregulation of DKK4 in SW480APC cells was confirmed by semiquantitative RT-PCR, immunoblotting, and immunogold electron microscopy. Analysis of the DKK4 gene promoter by methylation-specific PCR revealed reduced methylation in SW480APC cells, while RT-PCR demonstrated the downregulation of DNMT-3a, compared to the parental cell line. Our discovery of exosome-mediated secretion of DKK4 opens up the possibility that exosomal DKK4 may be a mechanism used by epithelial colon cells to regulate Wnt signaling which is lost during CRC progression.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Neoplasias del Colon/metabolismo , Exosomas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Exosomas/química , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Metilación , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Proteoma/análisis , Proteoma/genética , Proteoma/metabolismo , Proteómica , Regulación hacia Arriba , Vía de Señalización Wnt
15.
Methods ; 54(4): 396-406, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21272644

RESUMEN

Integral membrane proteins (IMPs) mediate several cellular functions including cell adhesion, ion and nutrient transport, and cell signalling. IMPs are typically hard to isolate and purify due to their hydrophobic nature and low cellular abundance, however, microsomes are small lipid vesicles rich in IMPs, which form spontaneously when cells are mechanically disrupted. In this study, we have employed mouse liver microsomes as a model for optimising a method for IMP isolation and characterisation. Microsomes were collected by differential centrifugation, purified with sodium carbonate, and subjected to GeLC-MS/MS analysis. A total of 1124 proteins were identified in the microsome fraction, with 47% (524/1124) predicted by TMHMM to contain at least one transmembrane domain (TMD). The ability of phase partitioning using the detergent Triton X-114 (TX-114) to further enrich for membrane proteins was evaluated. Microsomes were subjected to successive rounds of solubility-based phase separation, with proteins partitioning into the aqueous phase, detergent phase, or TX-114-insoluble pellet fraction. GeLC-MS/MS analysis of the three TX-114 fractions identified 1212 proteins, of which 146 were not detected in the un-fractionated microsome sample. Conspicuously, IMPs partitioned to the detergent phase, with 56% (435/770) of proteins identified in that fraction containing at least one TMD. GO Slim characterisation of the microsome proteome revealed enrichment of proteins from the endoplasmic reticulum, mitochondria, Golgi apparatus, endosome, and cytoplasm. Further, enzymes including monooxygenases were well represented with 35 cytochrome P450 identifications (CYPs 1A2, 2A5, 2A12, 2B10, 2C29, 2C37, 2C39, 2C44, 2C50, 2C54. 2C67, 2C68, 2C70, 2D10, 2D11, 2D22, 2D26, 2D9, 2E1, 2F2, 2J5, 2U1, 3A11, 3A13, 3A25, 4A10, 4A12A, 4A12B, 4F13, 4F14, 4F15, 4V3, 51,7B1, and 8B1). Evaluation of biological processes showed enrichment of proteins involved in fatty acid biosynthesis and elongation, as well as steroid synthesis. In addition, transport proteins including 24 members of the Rab family of GTPases were identified. Comparison of this dataset with the current mouse liver microsome proteome contributes an additional 648 protein identifications, of which 50% (326/648) contain at least one TMD.


Asunto(s)
Fraccionamiento Químico/métodos , Proteínas de la Membrana/aislamiento & purificación , Microsomas Hepáticos/metabolismo , Polietilenglicoles/química , Animales , Ratones , Octoxinol , Proteoma
16.
Front Cell Dev Biol ; 10: 1053139, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506089

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.

17.
Toxins (Basel) ; 14(2)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35202151

RESUMEN

Protein secretion is generally mediated by a series of distinct pathways in bacteria. Recently, evidence of a novel bacterial secretion pathway involving a bacteriophage-related protein has emerged. TcdE, a holin-like protein encoded by toxigenic isolates of Clostridioides difficile, mediates the release of the large clostridial glucosylating toxins (LCGTs), TcdA and TcdB, and TpeL from C. perfringens uses another holin-like protein, TpeE, for its secretion; however, it is not yet known if TcdE or TpeE secretion is specific to these proteins. It is also unknown if other members of the LCGT-producing clostridia, including Paeniclostridium sordellii (previously Clostridium sordellii), use a similar toxin-release mechanism. Here, we confirm that each of the LCGT-producing clostridia encode functional holin-like proteins in close proximity to the toxin genes. To characterise the respective roles of these holin-like proteins in the release of the LCGTs, P. sordellii and its lethal toxin, TcsL, were used as a model. Construction and analysis of mutants of the P. sordellii tcsE (holin-like) gene demonstrated that TcsE plays a significant role in TcsL release. Proteomic analysis of the secretome from the tcsE mutant confirmed that TcsE is required for efficient TcsL secretion. Unexpectedly, comparative sample analysis showed that TcsL was the only protein significantly altered in its release, suggesting that this holin-like protein has specifically evolved to function in the release of this important virulence factor. This specificity has, to our knowledge, not been previously shown and suggests that this protein may function as part of a specific mechanism for the release of all LCGTs.


Asunto(s)
Toxinas Bacterianas/metabolismo , Clostridium sordellii/metabolismo , Animales , Toxinas Bacterianas/genética , Chlorocebus aethiops , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Clostridium sordellii/genética , Células Vero
18.
iScience ; 25(10): 105168, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36204275

RESUMEN

More than half the world's population is infected with human cytomegalovirus (HCMV), causing congenital birth defects and impacting the immuno-compromised. Many of the >170 HCMV genes remain uncharacterized, and this gap in knowledge limits the development of novel antivirals. In this study, we investigated the essential viral protein UL49 and found it displayed leaky late expression kinetics, and localized to nuclear replication compartments. Cells infected with mutant UL49 virus were unable to produce infectious virions and phenocopied other beta-gamma viral pre-initiation complex (vPIC) subunit (UL79, UL87, UL91, UL92, and UL95) mutant infections. RNA-seq analysis of vPIC mutant infections revealed a consistent diminution of genes encoding capsid subunits, including TRX2/UL85 and MCP/UL86, envelope glycoproteins gM, gL and gO, and egress-associated tegument proteins UL99 and UL103. Therefore, as a member of the vPIC, UL49 serves as a fundamental HCMV effector that governs viral gene transcription required to complete the replication cycle.

19.
Proteomics ; 11(7): 1238-53, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21337516

RESUMEN

Plasma membrane (PM) proteins are attractive therapeutic targets because of their accessibility to drugs. Although genes encoding PM proteins represent 20-30% of eukaryotic genomes, a detailed characterisation of their encoded proteins is underrepresented, due, to their low copy number and the inherent difficulties in their isolation and purification as a consequence of their high hydrophobicity. We describe here a strategy that combines two orthogonal methods to isolate and purify PM proteins from Madin Darby canine kidney (MDCK) cells. In this two-step method, we first used cationic colloidal silica (CCS) to isolate adherent (Ad) and non-adherent (nAd) PM fractions, and then subjected each fraction to Triton X-114 (TX-114) phase partitioning to further enrich for hydrophobic proteins. While CCS alone identified 255/757 (34%) membrane proteins, CCS/TX-114 in combination yielded 453/745 (61%). Strikingly, of those proteins unique to CCS/TX-114, 277/393 (70%) had membrane annotation. Further characterisation of the CCS/TX-114 data set using Uniprot and transmembrane hidden Markov model revealed that 306/745 (41%) contained one or more transmembrane domains (TMDs), including proteins with 25 and 17 TMDs. Of the remaining proteins in the data set, 69/439 (16%) are known to contain lipid modifications. Of all membrane proteins identified, 93 had PM origin, including proteins that mediate cell adhesion, modulate transmembrane ion transport, and cell-cell communication. These studies reveal that the application of CCS to first isolate Ad and nAd PM fractions, followed by their detergent-phase TX-114 partitioning, to be a powerful method to isolate low-abundance PM proteins, and a useful adjunct for in-depth cell surface proteome analyses.


Asunto(s)
Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/aislamiento & purificación , Membrana Celular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteómica/métodos , Animales , Western Blotting , Cationes/metabolismo , Moléculas de Adhesión Celular/metabolismo , Fraccionamiento Celular , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Coloides/metabolismo , Bases de Datos de Proteínas , Perros , Femenino , Interacciones Hidrofóbicas e Hidrofílicas , Transporte Iónico/genética , Riñón/citología , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Octoxinol , Polietilenglicoles/metabolismo , Análisis por Matrices de Proteínas/métodos , Estructura Terciaria de Proteína , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Dióxido de Silicio/metabolismo
20.
Proteomics ; 11(20): 4029-39, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21834135

RESUMEN

The stem cell niche comprises stem cells (SCs), stromal cells, soluble factors, extracellular matrix constituents and vascular networks. The ability to identify signals that regulate SC self-renewal and differentiation is confounded by the difficulty in isolating pure SC niche components in sufficient quantities to enable their biochemical characterisation. Here, we report the extracellular (secretome) and adherent plasma membrane proteomes of three distinct epithelial cell subpopulations isolated and immortalized from the mouse mammary gland--basal and mammary stem cell (basal/MaSC), luminal progenitor (LP) and mature luminal (ML) cell lines. GeLC-MS/MS-based proteomic profiling revealed a distinct switch in components modulating Wnt and ephrin signalling, and integrin-mediated interactions amongst the three cell subpopulations. For example, expression of ephrin B2, ephrin receptors A1, and A2, as well as integrins α2ß1 and α6ß4 were shown to be enriched in basal/MaSCs, relative to LP and ML cells. Conspicuously, Wnt10a was uniquely detected in basal/MaSCs, and may modulate the canonical Wnt signalling pathway to maintain basal/MaSC activity. By contrast, non-canonical Wnt signalling might be elevated in ML cells, as evidenced by the high expression levels of Wnt5a, Wnt5b, and the transmembrane tyrosine kinase Ror2.


Asunto(s)
Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Proteómica , Animales , Línea Celular , Células Cultivadas , Células Epiteliales/citología , Femenino , Ratones , Transducción de Señal , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA