Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110940

RESUMEN

Membrane technology plays a central role in advancing separation processes, particularly in water treatment. Covalent organic frameworks (COFs) have transformative potential in this field due to their adjustable structures and robustness. However, conventional COF membrane synthesis methods are often associated with challenges, such as time-consuming processes and limited control over surface properties. Our study demonstrates a rapid, microwave-assisted method to synthesize self-standing COF membranes within minutes. This approach allows control over the wettability of the surface and achieves superhydrophilic and near-hydrophobic properties. A thorough characterization of the membrane allows a detailed analysis of the membrane properties and the difference in wettability between its two faces. Microwave activation accelerates the self-assembly of the COF nanosheets, whereby the thickness of the membrane can be controlled by adjusting the time of the reaction. The superhydrophilic vapor side of the membrane results from -NH2 reactions with acetic acid, while the nearly hydrophobic dioxane side has terminal aldehyde groups. Leveraging the superhydrophilic face, water filtration at high water flux, complete oil removal, increased rejection with anionic dye size, and resistance to organic fouling were achieved. The TTA-DFP-COF membrane opens new avenues for research to address the urgent need for water purification, distinguished by its synthesis speed, simplicity, and superior separation capabilities.

2.
Langmuir ; 34(5): 1865-1872, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29343062

RESUMEN

Nanocomposite thin films of TiO2 in a polymer-like matrix are grown in a filamentary argon (Ar) dielectric barrier discharge (DBD) from a suspension of TiO2 nanoparticles in isopropanol (IPA). The sinusoidal voltage producing the plasma is designed to independently control the matrix growth rate and the transport of nanoparticle (NP) aggregates to the surface. The useful FSK (frequency shift keying) modulation mode is chosen to successively generate two sinusoidal voltages: a high frequency of 15 kHz and a low frequency ranging from 0.5 to 3 kHz. The coating surface coverage by the NPs and the thickness of the matrix are measured as a function of the FSK parameters. The duty cycle between these two signals is varied from 0 to 100%. It is observed that the matrix thickness is mainly controlled by the power of the discharge, which largely depends on the high-frequency value. The quantity of NPs deposited in the composite thin film is proportional to the duration of the low frequency applied. The FSK waveform has a double modulation effect, allowing us to obtain a uniform coating as the NPs are not affected by the high frequency and the matrix growth rate is limited when the low frequency is applied. When it is close to a frequency limit, the low frequency acts like a filter for the NP aggregates. The higher the frequency, the smaller the size of the aggregates transferred to the surface. By changing only the FSK modulation parameters, the thin film can be switched from superhydrophobic to superhydrophilic, and under suitable conditions, a nanocomposite thin film is obtained.

3.
Polymers (Basel) ; 16(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611167

RESUMEN

Tung oil (TO) microcapsules (MCs) with a poly(urea-formaldehyde) (PUF) shell were synthesized via one-step in situ polymerization, with the addition of graphene nanoplatelets (GNPs) (1-5 wt. %). The synergistic effects of emulsifiers between gelatin (gel) and Tween 80 were observed, with gel chosen to formulate the MCs due to its enhanced droplet stability. SEM images then displayed an increased shell roughness of the TO-GNP MCs in comparison to the pure TO MCs due to the GNP species on the shell. At the same time, high-resolution transmission electron microscopy (TEM) images also confirmed the presence of GNPs on the outer layer of the MCs, with the stacked graphene layers composed of 5-7 layers with an interlayer distance of ~0.37 nm. Cross-sectional TEM imaging of the MCs also confirmed the successful encapsulation of the GNPs in the core of the MCs. Micromanipulation measurements displayed that the 5% GNPs increased the toughness by 71% compared to the pure TO MCs, due to the reduction in the fractional free volume of the core material. When the MCs were dispersed in an epoxy coating and applied on a metallic substrate, excellent healing capacities of up to 93% were observed for the 5% GNP samples, and 87% for the pure TO MC coatings. The coatings also exhibited excellent corrosion resistance for all samples up to 7 days, with the GNP samples offering a more strenuous path for the corrosive agents.

4.
Polymers (Basel) ; 15(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36771818

RESUMEN

The proper design of a polysaccharide/hydrocolloid modifier significantly affects the conductivity, self-healing, and viscoelastic properties of nanocomposite hydrogels. Due to the presence of different functional groups, these hydrogels can participate in the covalent, hydrogen and dynamic bonding of a system. The improvement of interactions in this system can lead to the development of high-performance nanocomposite hydrogels. In this study, resilient, self-healing and self-adhesive conductive nanocomposite hydrogels were produced by multiple and diverse coordination connections between various polysaccharide-based modifiers (Arabic gum, sodium carboxymethyl cellulose, and xanthan), the poly(vinyl alcohol) (PVA) network and different graphene-based fillers. Graphene nanoplatelets (GNP), activated carbon black (ACB), and reduced graphene oxide (rGO) have distinct functionalized surfaces, which were analyzed by X-ray photoelectron spectroscopy (XPS). Furthermore, the introduction of fillers balanced the hydrogels' viscoelastic properties and electrical conductivity, providing the hydrogels with resilience, improved electrical conductivity, and extreme stretchability (5000%). The self-healing properties were analyzed using time-dependent measurements in a shear strain mode using an RSO Rheometer. The improvement in electrochemical and conductivity properties was confirmed by electrochemical impedance spectroscopy (EIS). The obtained conductive nanocomposite hydrogels design opens new possibilities for developing high-performance polysaccharide-based hydrogels with wearable electrical sensors and healthcare monitoring applications.

5.
Sci Rep ; 13(1): 18523, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898662

RESUMEN

Graphene is a 2D material with promising commercial applications due to its physicochemical properties. Producing high-quality graphene economically and at large scales is currently of great interest and demand. Here, the potential of producing high-quality graphene at a large scale via water-phase exfoliation methods is investigated. By altering exfoliation parameters, the production yield of graphene and flake size are evaluated. Pretreatment of the precursor graphite powder using acidic solutions of H2SO4 at different concentrations is found to increase further the yield and structural quality of the exfoliated graphene flakes. These findings are confirmed through various spectroscopy and surface characterization techniques. Controlling flake size, thickness, and yield are demonstrated via optimization of the sonication process, centrifuge time, and H2SO4 pretreatment.

6.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296882

RESUMEN

The impact of a titania (TiO2) support film surface on the catalytic activity of gold nanoparticles (Au NP) was investigated. Using the reactive dc-magnetron sputtering technique, TiO2 films with an amorphous, anatase, and nitrogen-doped anatase crystal structure were produced for a subsequent role as a support material for Au NP. Raman spectra of these TiO2 films revealed that both vacuum and NH3 annealing treatments promoted amorphous to anatase phase transformation through the presence of a peak in the 513-519 cm-1 spectral regime. Furthermore, annealing under NH3 flux had an associated blue shift and broadening of the Raman active mode at 1430 cm-1, characteristic of an increase in the oxygen vacancies (VO). For a 3 to 15 s sputter deposition time, the Au NP over TiO2 support films were in the 6.7-17.1 nm size range. From X-ray photoelectron spectroscope (XPS) analysis, the absence of any shift in the Au 4f core level peak implied that there was no change in the electronic properties of Au NP. On the other hand, spontaneous hydroxyl (-OH) group adsorption to anatase TiO2 support was instantly detected, the magnitude of which was found to be enhanced upon increasing the Au NP loading. Nitrogen-doped anatase TiO2 supporting Au NP with ~21.8 nm exhibited a greater extent of molecular oxygen adsorption. The adsorption of both -OH and O2 species is believed to take place at the perimeter sites of the Au NP interfacing with the TiO2 film. XPS analyses and discussions about the tentative roles of O2 and -OH adsorbent species toward Au/TiO2 systems corroborate very well with interpretations of density functional theory simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA