Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cell Biochem ; 122(11): 1639-1652, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34289161

RESUMEN

Multiple d-amino acids are present in mammalian cells, and these compounds have distinctive physiological functions. Among the free d-amino acids identified in mammals, d-aspartate plays critical roles in the neuroendocrine and endocrine systems, as well as in the central nervous system. Mammalian cells have the molecular apparatus necessary to take up, degrade, synthesize, and release d-aspartate. In particular, d-aspartate is degraded by d-aspartate oxidase (DDO), a peroxisome-localized enzyme that catalyzes the oxidative deamination of d-aspartate to generate oxaloacetate, hydrogen peroxide, and ammonia. However, little is known about the molecular mechanisms underlying d-aspartate homeostasis in cells. In this study, we established a cell line that overexpresses cytoplasm-localized DDO; this cell line cannot survive in the presence of high concentrations of d-aspartate, presumably because high levels of toxic hydrogen peroxide are produced by metabolism of abundant d-aspartate by DDO in the cytoplasm, where hydrogen peroxide cannot be removed due to the absence of catalase. Next, we transfected these cells with a complementary DNA library derived from the human brain and screened for clones that affected d-aspartate metabolism and improved cell survival, even when the cells were challenged with high concentrations of d-aspartate. The screen identified a clone of glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Moreover, the GRHPR metabolites glyoxylate and hydroxypyruvate inhibited the enzymatic activity of DDO. Furthermore, we evaluated the effects of GRHPR and peroxisome-localized DDO on d- and l-aspartate levels in cultured mammalian cells. Our findings show that GRHPR contributes to the homeostasis of these amino acids in mammalian cells.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Ácido Aspártico/metabolismo , Oxidorreductasas de Alcohol/genética , Ácido Aspártico/farmacología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Supervivencia Celular/efectos de los fármacos , D-Aspartato Oxidasa/antagonistas & inhibidores , D-Aspartato Oxidasa/genética , D-Aspartato Oxidasa/metabolismo , Glioxilatos/metabolismo , Glioxilatos/farmacología , Células HEK293 , Células HeLa , Humanos , NADP , Piruvatos/metabolismo , Piruvatos/farmacología
2.
Bioorg Med Chem Lett ; 26(2): 556-560, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26642769

RESUMEN

Mammalian cells possess the molecular apparatus necessary to take up, degrade, synthesize, and release free d-aspartate, which plays an important role in physiological functions within the body. Here, biologically active microbial compounds and pre-existing drugs were screened for their ability to alter the intracellular d-aspartate level in mammalian cells, and several candidate compounds were identified. Detailed analytical studies suggested that two of these compounds, mithramycin A and geldanamycin, suppress the biosynthesis of d-aspartate in cells. Further studies suggested that these compounds act at distinct sites within the cell. These compounds may advance our current understanding of biosynthesis of d-aspartate in mammals, a whole picture of which remains to be disclosed.


Asunto(s)
Ácido Aspártico/antagonistas & inhibidores , Benzoquinonas/farmacología , Lactamas Macrocíclicas/farmacología , Plicamicina/análogos & derivados , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Ácido Aspártico/biosíntesis , Células HEK293 , Humanos , Células PC12 , Plicamicina/farmacología , Ratas , Sesquiterpenos/farmacología , Estereoisomerismo
3.
Amino Acids ; 47(5): 975-85, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25646960

RESUMEN

D-Aspartate (D-Asp) has important physiological functions, and recent studies have shown that substantial amounts of free D-Asp are present in a wide variety of mammalian tissues and cells. Biosynthesis of D-Asp has been observed in several cultured rat cell lines, and a murine gene (glutamate-oxaloacetate transaminase 1-like 1, Got1l1) that encodes Asp racemase, a synthetic enzyme that produces D-Asp from L-Asp, was proposed recently. The product of this gene is homologous to mammalian glutamate-oxaloacetate transaminase (GOT). Here, we tested the hypothesis that rat and human homologs of mouse GOT1L1 are involved in Asp synthesis. The following two approaches were applied, since the numbers of attempts were unsuccessful to prepare soluble GOT1L1 recombinant proteins. First, the relationship between the D-Asp content and the expression levels of the mRNAs encoding GOT1L1 and D-Asp oxidase, a primary degradative enzyme of D-Asp, was examined in several rat and human cell lines. Second, the effect of knockdown of the Got1l1 gene on D-Asp biosynthesis during culture of the cells was determined. The results presented here suggest that the rat and human homologs of mouse GOT1L1 are not involved in D-Asp biosynthesis. Therefore, D-Asp biosynthetic pathway in mammals is still an urgent issue to be resolved.


Asunto(s)
Isomerasas de Aminoácido/metabolismo , D-Aspartato Oxidasa/metabolismo , Ácido D-Aspártico/biosíntesis , ARN Mensajero/metabolismo , Isomerasas de Aminoácido/antagonistas & inhibidores , Isomerasas de Aminoácido/genética , Animales , Línea Celular Tumoral , D-Aspartato Oxidasa/genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Células Hep G2 , Humanos , Riñón/enzimología , Riñón/patología , Ratones , Células PC12 , Hipófisis/enzimología , Hipófisis/patología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Homología de Secuencia de Aminoácido , Especificidad de la Especie
4.
Biol Pharm Bull ; 38(2): 298-305, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25747990

RESUMEN

D-Aspartate (D-Asp), a free D-amino acid found in mammals, plays crucial roles in the neuroendocrine, endocrine, and central nervous systems. Recent studies have implicated D-Asp in the pathophysiology of infertility and N-methyl-D-Asp receptor-related diseases. D-Asp oxidase (DDO), a degradative enzyme that is stereospecific for acidic D-amino acids, is the sole catabolic enzyme acting on D-Asp in mammals. Human DDO is considered an attractive therapeutic target, and DDO inhibitors may be potential lead compounds for the development of new drugs against the aforementioned diseases. However, human DDO has not been characterized in detail and, although preclinical studies using experimental rodents are prerequisites for evaluating the in vivo effects of potential inhibitors, the existence of species-specific differences in the properties of human and rodent DDOs is still unclear. Here, the enzymatic activity and characteristics of purified recombinant human DDO were analyzed in detail. The kinetic and inhibitor-binding properties of this enzyme were also compared with those of purified recombinant rat and mouse DDOs. In addition, structural models of human, rat, and mouse DDOs were generated and compared. It was found that the differences among these DDO proteins occur in regions that appear involved in migration of the substrate/product in and out of the active site. In summary, detailed characterization of human DDO was performed and provides useful insights into the use of rats and mice as experimental models for evaluating the in vivo effects of DDO inhibitors.


Asunto(s)
D-Aspartato Oxidasa/química , D-Aspartato Oxidasa/metabolismo , Animales , Línea Celular , Ácido D-Aspártico/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ratones , Modelos Moleculares , N-Metilaspartato/metabolismo , Conformación Proteica , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura
5.
Biochemistry ; 52(33): 5665-74, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23859606

RESUMEN

d-Amino acid oxidase (DAO) is a degradative enzyme that is stereospecific for d-amino acids, including d-serine and d-alanine, which are believed to be coagonists of the N-methyl-d-aspartate (NMDA) receptor. To identify a new class of DAO inhibitor(s) that can be used to elucidate the molecular details of the active site environment of DAO, manifold biologically active compounds of microbial origin and pre-existing drugs were screened for their ability to inhibit DAO activity, and several compounds were identified as candidates. One of these compounds, acyclovir (ACV), a well-known antiviral drug used for the treatment of herpesvirus infections, was characterized and evaluated as a novel DAO inhibitor in vitro. Analysis showed that ACV acts on DAO as a reversible slow-binding inhibitor, and interestingly, the time required to achieve equilibrium between DAO, ACV, and the DAO/ACV complex was highly dependent on temperature. The binding mechanism of ACV to DAO was investigated in detail by several approaches, including kinetic analysis, structural modeling of DAO complexed with ACV, and site-specific mutagenesis of an active site residue postulated to be involved in the binding of ACV. The results confirm that ACV is a novel, active site-directed inhibitor of DAO that can be a valuable tool for investigating the structure-function relationships of DAO, including the molecular details of the active site environment of DAO. In particular, it appears that ACV can serve as an active site probe to study the structural basis of temperature-induced conformational changes of DAO.


Asunto(s)
Aciclovir/metabolismo , Aciclovir/farmacología , D-Aminoácido Oxidasa/antagonistas & inhibidores , D-Aminoácido Oxidasa/metabolismo , Aciclovir/química , Algoritmos , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Benzoatos/química , Benzoatos/metabolismo , Benzoatos/farmacología , Dominio Catalítico/genética , D-Aminoácido Oxidasa/química , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Modelos Moleculares , Estructura Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Temperatura
6.
J Pharm Biomed Anal ; 116: 109-15, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25596033

RESUMEN

D-Aspartate (D-Asp), a free D-amino acid found in mammals, plays crucial roles in the central nervous, neuroendocrine, and endocrine systems. In mammalian tissues, D-Asp oxidase (DDO) is a degradative enzyme that stereospecifically acts on D-Asp. Asp racemase, a synthetic enzyme that produces D-Asp from L-Asp, has been identified in several lower organisms; however, the biosynthetic pathway of D-Asp in mammals remains to be fully clarified. The aim of this study was to establish a simple, accurate, and sensitive enzymatic method for the determination of Asp racemase activity. Using recombinant Streptococcus thermophilus Asp racemase as a model enzyme, two enzymatic methods for the determination of Asp racemase activity were optimized. In these methods, recombinant human DDO was used to degrade D-Asp formed from L-Asp by the Asp racemase reaction to 2-oxo acid, the amounts of which were then determined using a colorimetric assay. In one method, designated the coupling method, DDO was concomitantly included in the Asp racemase reaction mixture, and the Asp racemase reaction was readily coupled to the D-Asp degradative reaction by DDO during the incubation. In the other method, designated the separating method, an aliquot of the Asp racemase reaction mixture was mixed with DDO after the reaction to determine the amounts of D-Asp produced by Asp racemase. Under optimized conditions, the accuracy and sensitivity of these two methods were examined and compared, both to one another and conventional high-performance liquid chromatography (HPLC). The results presented here suggest that the coupling method is more accurate and sensitive than the other two methods and can be used for the determination of Asp racemase activity. The coupling method may help to advance our current understanding of the biosynthetic pathway of D-Asp in mammals.


Asunto(s)
Isomerasas de Aminoácido/análisis , Isomerasas de Aminoácido/metabolismo , Ácido Aspártico/análisis , Ácido Aspártico/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Activación Enzimática/fisiología , Humanos , Streptococcus thermophilus/enzimología
7.
J Med Chem ; 58(18): 7328-40, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26322531

RESUMEN

D-Aspartate oxidase (DDO) is a degradative enzyme that is stereospecific for acidic D-amino acids, including D-aspartate, a potential agonist of the N-methyl-D-aspartate (NMDA) receptor. Dysfunction of NMDA receptor-mediated neurotransmission has been implicated in the onset of various mental disorders, such as schizophrenia. Hence, a DDO inhibitor that increases the brain levels of D-aspartate and thereby activates NMDA receptor function is expected to be a useful compound. To search for potent DDO inhibitor(s), a large number of compounds were screened in silico, and several compounds were identified as candidates. They were then characterized and evaluated as novel DDO inhibitors in vitro (e.g., the inhibitor constant value of 5-aminonicotinic acid for human DDO was 3.80 µM). The present results indicate that some of these compounds may serve as lead compounds for the development of a clinically useful DDO inhibitor and as active site probes to elucidate the structure-function relationships of DDO.


Asunto(s)
D-Aspartato Oxidasa/antagonistas & inhibidores , Ácidos Nicotínicos/química , Animales , Dominio Catalítico , Simulación por Computador , D-Aminoácido Oxidasa/antagonistas & inhibidores , D-Aspartato Oxidasa/química , D-Aspartato Oxidasa/metabolismo , Bases de Datos de Compuestos Químicos , Células HeLa , Humanos , Ratones , Modelos Moleculares , Ácidos Nicotínicos/farmacología , Ratas , Proteínas Recombinantes/química , Estereoisomerismo , Relación Estructura-Actividad
8.
J Med Chem ; 56(5): 1894-907, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23391306

RESUMEN

D-amino acid oxidase (DAO) is a degradative enzyme that is stereospecific for D-amino acids, including D-serine and D-alanine, which are potential coagonists of the N-methyl-D-aspartate (NMDA) receptor. Dysfunction of NMDA receptor-mediated neurotransmission has been implicated in the onset of various mental disorders such as schizophrenia. Hence, a DAO inhibitor that augments the brain levels of D-serine and/or D-alanine and thereby activates NMDA receptor function is expected to be an antipsychotic drug, for instance, in the treatment of schizophrenia. In the search for potent DAO inhibitor(s), a large number of compounds were screened in silico, and several compounds were estimated as candidates. These compounds were then characterized and evaluated as novel DAO inhibitors in vitro. The results reported in this study indicate that some of these compounds are possible lead compounds for the development of a clinically useful DAO inhibitor and have the potential to serve as active site probes to elucidate the structure-function relationships of DAO.


Asunto(s)
D-Aminoácido Oxidasa/antagonistas & inhibidores , Inhibidores Enzimáticos/aislamiento & purificación , Antipsicóticos , Simulación por Computador , D-Aspartato Oxidasa/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Humanos , Racemasas y Epimerasas/antagonistas & inhibidores , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA