Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 171(6): 1316-1325.e12, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29129375

RESUMEN

Alternative promoter usage is a proteome-expanding mechanism that allows multiple pre-mRNAs to be transcribed from a single gene. The impact of this mechanism on the proteome and whether it is positively exploited in normal organismal responses remain unclear. We found that the plant photoreceptor phytochrome induces genome-wide changes in alternative promoter selection in Arabidopsis thaliana. Through this mechanism, protein isoforms with different N termini are produced that display light-dependent differences in localization. For instance, shade-grown plants accumulate a cytoplasmic isoform of glycerate kinase (GLYK), an essential photorespiration enzyme that was previously thought to localize exclusively to the chloroplast. Cytoplasmic GLYK constitutes a photorespiratory bypass that alleviates fluctuating light-induced photoinhibition. Therefore, phytochrome controls alternative promoter selection to modulate protein localization in response to changing light conditions. This study suggests that alternative promoter usage represents another ubiquitous layer of gene expression regulation in eukaryotes that contributes to diversification of the proteome.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Fitocromo/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Regiones Promotoras Genéticas
2.
Nucleic Acids Res ; 52(2): e7, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37994784

RESUMEN

Precise detection of the transcriptional start site (TSS) is a key for characterizing transcriptional regulation of genes and for annotation of newly sequenced genomes. Here, we describe the development of an improved method, designated 'TSS-seq2.' This method is an iterative improvement of TSS-seq, a previously published enzymatic cap-structure conversion method to detect TSSs in base sequences. By modifying the original procedure, including by introducing split ligation at the key cap-selection step, the yield and the accuracy of the reaction has been substantially improved. For example, TSS-seq2 can be conducted using as little as 5 ng of total RNA with an overall accuracy of 96%; this yield a less-biased and more precise detection of TSS. We then applied TSS-seq2 for TSS analysis of four plant species that had not yet been analyzed by any previous TSS method.


Asunto(s)
Análisis de Secuencia de ARN , Sitio de Iniciación de la Transcripción , Secuencia de Bases , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN/métodos
3.
Plant Physiol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805221

RESUMEN

Heme, an organometallic tetrapyrrole, is widely engaged in oxygen transport, electron delivery, enzymatic reactions, and signal transduction. In plants, it is also involved in photomorphogenesis and photosynthesis. HEME OXYGENASE 1 (HO1) initiates the first committed step in heme catabolism, and it has generally been thought that this reaction takes place in chloroplasts. Here, we show that HO1 in both Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) has two transcription start sites (TSSs), producing long (HO1L) and short (HO1S) transcripts. Their products localize to the chloroplast and the cytosol, respectively. During early development or de-etiolation, the HO1L/HO1S ratio gradually increases. Light perception via phytochromes and cryptochromes elevates the HO1L/HO1S ratio in the whole seedling through the functions of ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH) and through the suppression of DE-ETIOLATED 1 (DET1), CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), and PHYTOCHROME INTERACTING FACTORs (PIFs). HO1L introduction complements the HO1-deficient mutant; surprisingly, HO1S expression also restores the short hypocotyl phenotype and high pigment content and helps the mutant recover from the genomes uncoupled (gun) phenotype. This indicates the assembly of functional phytochromes within these lines. Furthermore, our findings support the hypothesis that a mobile heme signal is involved in retrograde signaling from the chloroplast. Altogether, our work clarifies the molecular mechanism of HO1 TSS regulation and highlights the presence of a cytosolic bypass for heme catabolism in plant cells.

4.
Plant Cell Physiol ; 65(3): 350-361, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38175914

RESUMEN

Young seedlings use nutrients stored in the seeds to grow and acquire photosynthetic potential. This process, called seedling establishment, involves a developmental phase transition from heterotrophic to autotrophic growth. Some membrane-trafficking mutants of Arabidopsis (Arabidopsis thaliana), such as the katamari2 (kam2) mutant, exhibit growth arrest during seedling development, with a portion of individuals failing to develop true leaves on sucrose-free solid medium. However, the reason for this seedling arrest is unclear. In this study, we show that seedling arrest is a temporal growth arrest response that occurs not only in kam2 but also in wild-type (WT) Arabidopsis; however, the threshold for this response is lower in kam2 than in the WT. A subset of the arrested kam2 seedlings resumed growth after transfer to fresh sucrose-free medium. Growth arrest in kam2 on sucrose-free medium was restored by increasing the gel concentration of the medium or covering the surface of the medium with a perforated plastic sheet. WT Arabidopsis seedlings were also arrested when the gel concentration of sucrose-free medium was reduced. RNA sequencing revealed that transcriptomic changes associated with the rate of seedling establishment were observed as early as 4 d after sowing. Our results suggest that the growth arrest of both kam2 and WT seedlings is an adaptive stress response and is not simply caused by the lack of a carbon source in the medium. This study provides a new perspective on an environmental stress response under unfavorable conditions during the phase transition from heterotrophic to autotrophic growth in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Procesos Autotróficos , Regulación de la Expresión Génica de las Plantas , Procesos Heterotróficos , Plantones
5.
Plant Mol Biol ; 111(1-2): 189-203, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36306001

RESUMEN

De novo genes created in the plant mitochondrial genome have frequently been transferred into the nuclear genome via intergenomic gene transfer events. Therefore, plant mitochondria might be a source of de novo genes in the nuclear genome. However, the functions of de novo genes originating from mitochondria and the evolutionary fate remain unclear. Here, we revealed that an Arabidopsis thaliana specific small coding gene derived from the mitochondrial genome regulates floral transition. We previously identified 49 candidate de novo genes that induce abnormal morphological changes on overexpression. We focused on a candidate gene derived from the mitochondrial genome (sORF2146) that encodes 66 amino acids. Comparative genomic analyses indicated that the mitochondrial sORF2146 emerged in the Brassica lineage as a de novo gene. The nuclear sORF2146 emerged following an intergenomic gene transfer event in the A. thaliana after the divergence between Arabidopsis and Capsella. Although the nuclear and mitochondrial sORF2146 sequences are the same in A. thaliana, only the nuclear sORF2146 is transcribed. The nuclear sORF2146 product is localized in mitochondria, which may be associated with the pseudogenization of the mitochondrial sORF2146. To functionally characterize the nuclear sORF2146, we performed a transcriptomic analysis of transgenic plants overexpressing the nuclear sORF2146. Flowering transition-related genes were highly regulated in the transgenic plants. Subsequent phenotypic analyses demonstrated that the overexpression and knockdown of sORF2146 in transgenic plants resulted in delayed and early flowering, respectively. These findings suggest that a lineage-specific de novo gene derived from mitochondria has an important regulatory effect on floral transition.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica , Arabidopsis/metabolismo , Genoma de Planta , Brassica/genética , Perfilación de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Flores/genética , Flores/metabolismo
6.
Plant Physiol ; 183(1): 304-316, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32193212

RESUMEN

Blue-light-induced chloroplast movements play an important role in maximizing light utilization for photosynthesis in plants. Under a weak light condition, chloroplasts accumulate to the cell surface to capture light efficiently (chloroplast accumulation response). Conversely, chloroplasts escape from strong light and move to the side wall to reduce photodamage (chloroplast avoidance response). The blue light receptor phototropin (phot) regulates these chloroplast movements and optimizes leaf photosynthesis by controlling other responses in addition to chloroplast movements. Seed plants such as Arabidopsis (Arabidopsis thaliana) have phot1 and phot2. They redundantly mediate phototropism, stomatal opening, leaf flattening, and the chloroplast accumulation response. However, the chloroplast avoidance response is induced by strong blue light and regulated primarily by phot2. Phots are localized mainly on the plasma membrane. However, a substantial amount of phot2 resides on the chloroplast outer envelope. Therefore, differentially localized phot2 might have different functions. To determine the functions of plasma membrane- and chloroplast envelope-localized phot2, we tethered it to these structures with their respective targeting signals. Plasma membrane-localized phot2 regulated phototropism, leaf flattening, stomatal opening, and chloroplast movements. Chloroplast envelope-localized phot2 failed to mediate phototropism, leaf flattening, and the chloroplast accumulation response but partially regulated the chloroplast avoidance response and stomatal opening. Based on the present and previous findings, we propose that phot2 localized at the interface between the plasma membrane and the chloroplasts is required for the chloroplast avoidance response and possibly for stomatal opening as well.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Fotosíntesis/genética , Fotosíntesis/fisiología , Fototropinas/metabolismo , Fototropismo/genética , Fototropismo/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología
7.
J Exp Bot ; 72(4): 1260-1270, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33165567

RESUMEN

Hydathodes are typically found at leaf teeth in vascular plants and are involved in water release to the outside. Although morphological and physiological analysis of hydathodes has been performed in various plants, little is known about the genes involved in hydathode function. In this study, we performed fluorescent protein-based imaging and tissue-specific RNA-seq analysis in Arabidopsis hydathodes. We used the enhancer trap line E325, which has been reported to express green fluorescent protein (GFP) at its hydathodes. We found that E325-GFP was expressed in small cells found inside the hydathodes (named E cells) that were distributed between the water pores and xylem ends. No fluorescence of the phloem markers pSUC2:GFP and pSEOR1:SEOR1-YFP was observed in the hydathodes. These observations indicate that Arabidopsis hydathodes are composed of three major components: water pores, xylem ends, and E cells. In addition, we performed transcriptome analysis of the hydathode using the E325-GFP line. Microsamples were collected from GFP-positive or -negative regions of E325 leaf margins with a needle-based device (~130 µm in diameter). RNA-seq was performed with each single microsample using a high-throughput library preparation method called Lasy-Seq. We identified 72 differentially expressed genes. Among them, 68 genes showed significantly higher and four genes showed significantly lower expression in the hydathode. Our results provide new insights into the molecular basis for hydathode physiology and development.


Asunto(s)
Arabidopsis/fisiología , Hojas de la Planta/fisiología , Agua/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis , RNA-Seq , Xilema/fisiología
8.
Plant Cell Environ ; 42(5): 1615-1629, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30620085

RESUMEN

Brassinosteroid (BR) signalling is known to be coordinated with light signalling in above ground tissue. Many studies focusing on the shade avoidance response in above ground tissue or hypocotyl elongation in darkness have revealed the contribution of the BR signalling pathway to these processes. We previously analysed the expression of DWARF 4 (DWF4), a key BR biosynthesis enzyme, and revealed that light perception in above ground tissues triggered DWF4 accumulation in root tips. To determine the required wavelength of light and photoreceptors responsible for this regulation, we studied DWF4-GUS marker plants grown in several monochromatic light conditions. We revealed that monochromatic blue LED light could induce DWF4 accumulation in primary root tips and root growth as much as white light, whereas monochromatic red LED could not. Consistent with this, a cryptochrome1/2 double mutant showed retarded root growth under white light whereas a phytochromeA/B double mutant did not. Taken together, our data strongly indicated that blue light signalling was important for DWF4 accumulation in root tips and root growth. Furthermore, DWF4 accumulation patterns in primary root tips were not altered by auxin or sugar treatment. Therefore, we hypothesize that blue light signalling from the shoot tissue is different from auxin and sugar signalling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Criptocromos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis , Oscuridad , Regulación de la Expresión Génica de las Plantas , Fototransducción/fisiología , Raíces de Plantas/metabolismo
9.
Plant Cell ; 27(4): 1173-84, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25841039

RESUMEN

Axillary shoot formation is a key determinant of plant architecture. Formation of the axillary shoot is regulated by initiation of the axillary meristem or outgrowth of the axillary bud. Here, we show that rice (Oryza sativa) TILLERS ABSENT1 (TAB1; also known as Os WUS), an ortholog of Arabidopsis thaliana WUS, is required to initiate axillary meristem development. We found that formation of the axillary meristem in rice proceeds via a transient state, which we term the premeristem, characterized by the expression of OSH1, a marker of indeterminate cells in the shoot apical meristem. In the tab1-1 (wus-1) mutant, however, formation of the axillary meristem is arrested at various stages of the premeristem zone, and OSH1 expression is highly reduced. TAB1/WUS is expressed in the premeristem zone, where it shows a partially overlapping pattern with OSH1. It is likely, therefore, that TAB1 plays an important role in maintaining the premeristem zone and in promoting the formation of the axillary meristem by promoting OSH1 expression. Temporal expression patterns of WUSCHEL-RELATED HOMEOBOX4 (WOX4) indicate that WOX4 is likely to regulate meristem maintenance instead of TAB1 after establishment of the axillary meristem. Lastly, we show that the prophyll, the first leaf in the secondary axis, is formed from the premeristem zone and not from the axillary meristem.


Asunto(s)
Meristema/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Oryza/genética , Proteínas de Plantas/genética , Unión Proteica
10.
Proc Natl Acad Sci U S A ; 111(52): 18781-6, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512548

RESUMEN

Plants monitor the ambient light conditions using several informational photoreceptors, including red/far-red light absorbing phytochrome. Phytochrome is widely believed to regulate the transcription of light-responsive genes by modulating the activity of several transcription factors. Here we provide evidence that phytochrome significantly changes alternative splicing (AS) profiles at the genomic level in Arabidopsis, to approximately the same degree as it affects steady-state transcript levels. mRNA sequencing analysis revealed that 1,505 and 1,678 genes underwent changes in their AS and steady-state transcript level profiles, respectively, within 1 h of red light exposure in a phytochrome-dependent manner. Furthermore, we show that splicing factor genes were the main early targets of AS control by phytochrome, whereas transcription factor genes were the primary direct targets of phytochrome-mediated transcriptional regulation. We experimentally validated phytochrome-induced changes in the AS of genes that are involved in RNA splicing, phytochrome signaling, the circadian clock, and photosynthesis. Moreover, we show that phytochrome-induced AS changes of SPA1-RELATED 3, the negative regulator of light signaling, physiologically contributed to promoting photomorphogenesis. Finally, photophysiological experiments demonstrated that phytochrome transduces the signal from its photosensory domain to induce light-dependent AS alterations in the nucleus. Taking these data together, we show that phytochrome directly induces AS cascades in parallel with transcriptional cascades to mediate light responses in Arabidopsis.


Asunto(s)
Empalme Alternativo/fisiología , Arabidopsis/metabolismo , Fitocromo/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , Transcripción Genética/fisiología
11.
J Plant Res ; 129(2): 175-87, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26858202

RESUMEN

The blue light (BL) receptor phototropin (phot) is specifically found in green plants; it regulates various BL-induced responses such as phototropism, chloroplast movement, stomatal opening, and leaf flattening. In Arabidopsis thaliana, two phototropins--phot1 and phot2--respond to blue light in overlapping but distinct ways. These BL-receptor-mediated responses enhance the photosynthetic activity of plants under weak light and minimize photodamage under strong light conditions. Welwitschia mirabilis Hook.f. found in the Namib Desert, and it has adapted to severe environmental stresses such as limiting water and strong sunlight. Although the plant has physiologically and ecologically unique features, it is unknown whether phototropin is functional in this plant. In this study, we assessed the functioning of phot-mediated BL responses in W. mirabilis. BL-dependent phototropism and stomatal opening was observed but light-dependent chloroplast movement was not detected. We performed a functional analysis of the PHOT1 gene of W. mirabilis, WmPHOT1, in Arabidopsis thaliana. We generated transgenic A. thaliana lines expressing WmPHOT1 in a phot1 phot2 double mutant background. Several Wmphot1 transgenic plants showed normal growth, although phot1 phot2 double mutant plants showed stunted growth. Furthermore, Wmphot1 transgenic plants showed normal phot1-mediated responses including phototropism, chloroplast accumulation, stomatal opening, and leaf flattening, but lacked the chloroplast avoidance response that is specifically mediated by phot2. Thus, our findings indicate that W. mirabilis possesses typical phot-mediated BL responses that were at least partially mediated by functional phototropin 1, an ortholog of Atphot1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Gnetophyta/fisiología , Fototransducción , Fosfoproteínas/metabolismo , Fototropinas/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Gnetophyta/genética , Gnetophyta/efectos de la radiación , Luz , Mutación , Fosfoproteínas/genética , Fotosíntesis/efectos de la radiación , Fototropinas/genética , Fototropismo/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación
12.
Plant Cell Physiol ; 56(10): 2014-23, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26272552

RESUMEN

Plants have evolved various mechanisms that protect against the harmful effects of UV-B radiation (280-315 nm) on growth and development. Cyclobutane pyrimidine dimer (CPD) photolyase, the repair enzyme for UV-B-induced CPDs, is essential for protecting cells from UV-B radiation. Expression of the CPD photolyase gene (PHR) is controlled by light with various wavelengths including UV-B, but the mechanisms of this regulation remain poorly understood. In this study, we investigated the regulation of PHR expression by light with various wavelengths, in particular low-fluence UV-B radiation (280 nm, 0.2 µmol m(-2) s(-1)), in Arabidopsis thaliana seedlings grown under light-dark cycles for 7 d and then adapted to the dark for 3 d. Low-fluence UV-B radiation induced CPDs but not reactive oxygen species. AtPHR expression was effectively induced by UV-B, UV-A (375 nm) and blue light. Expression induced by UV-A and blue light was predominantly regulated by the cryptochrome-dependent pathway, whereas phytochromes A and B played a minor but noticeable role. Expression induced by UV-B was predominantly regulated by the UVR8-dependent pathway. AtPHR expression was also mediated by a UVR8-independent pathway, which is correlated with CPD accumulation induced by UV-B radiation. These results indicate that Arabidopsis has evolved diverse mechanisms to regulate CPD photolyase expression by multiple photoreceptor signaling pathways, including UVR8-dependent and -independent pathways, as protection against harmful effects of UV-B radiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Desoxirribodipirimidina Fotoliasa/metabolismo , Rayos Ultravioleta , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Desoxirribodipirimidina Fotoliasa/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Transducción de Señal/efectos de la radiación
13.
Plant Physiol ; 162(3): 1529-38, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23669744

RESUMEN

FLOWERING LOCUS T (FT) is the major regulatory component controlling photoperiodic floral transition. It is expressed in guard cells and affects blue light-induced stomatal opening induced by the blue-light receptor phototropins phot1 and phot2. Roles for other flowering regulators in stomatal opening have yet to be determined. We show in Arabidopsis (Arabidopsis thaliana) that TWIN SISTER OF FT (TSF), CONSTANS (CO), and GIGANTEA (GI) provide a positive effect on stomatal opening. TSF, which is the closest homolog of FT, was transcribed in guard cells, and light-induced stomatal opening was repressed in tsf-1, a T-DNA insertion mutant of TSF. Overexpression of TSF in a phot1 phot2 mutant background gave a constitutive open-stomata phenotype. Then, we examined whether CO and GI, which are upstream regulators of FT and TSF in photoperiodic flowering, are involved in stomatal opening. Similar to TSF, light-induced stomatal opening was suppressed in the GI and CO mutants gi-1 and co-1. A constitutive open-stomata phenotype was observed in GI and CO overexpressors with accompanying changes in the transcription of both FT and TSF. In photoperiodic flowering, photoperiod is sensed by photoreceptors such as the cryptochromes cry1 and cry2. We examined stomatal phenotypes in a cry1 cry2 mutant and in CRY2 overexpressors. Light-induced stomatal opening was suppressed in cry1 cry2, and the transcription of FT and TSF was down-regulated. In contrast, the stomata in CRY2 overexpressors opened even in the dark, and FT and TSF transcription was up-regulated. We conclude that the photoperiodic flowering components TSF, GI, and CO positively affect stomatal opening.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Estomas de Plantas/fisiología , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Unión al ADN/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Proteínas de Unión a Fosfatidiletanolamina/genética , Fotoperiodo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética
14.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746097

RESUMEN

Seasonal changes in spring induce flowering by expressing the florigen, FLOWERING LOCUS T (FT), in Arabidopsis. FT is expressed in unique phloem companion cells with unknown characteristics. The question of which genes are co-expressed with FT and whether they have roles in flowering remains elusive. Through tissue-specific translatome analysis, we discovered that under long-day conditions with the natural sunlight red/far-red ratio, the FT-producing cells express a gene encoding FPF1-LIKE PROTEIN 1 (FLP1). The master FT regulator, CONSTANS (CO), controls FLP1 expression, suggesting FLP1's involvement in the photoperiod pathway. FLP1 promotes early flowering independently of FT, is active in the shoot apical meristem, and induces the expression of SEPALLATA 3 (SEP3), a key E-class homeotic gene. Unlike FT, FLP1 facilitates inflorescence stem elongation. Our cumulative evidence indicates that FLP1 may act as a mobile signal. Thus, FLP1 orchestrates floral initiation together with FT and promotes inflorescence stem elongation during reproductive transitions.

15.
Plant J ; 70(5): 727-38, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22324426

RESUMEN

Plants monitor the light environment through informational photoreceptors that include phytochromes. In seedling de-etiolation, phytochrome B (phyB), which is the most important member of the phytochrome family, interacts with transcription factors to regulate gene expression and transduce light signals. In this study, we identified rrc1 (reduced red-light responses in cry1cry2 background 1), an Arabidopsis mutant that is impaired in phyB-mediated light responses. A genetic analysis demonstrated that RRC1 affected light signaling in a phyB-dependent manner. RRC1 encodes an ortholog of the human potential splicing factor SR140. The RRC1 polypeptide contains a C-terminal arginine/serine-rich (RS) domain that is important for the regulation of alternative splicing. Although the complete loss of RRC1 caused pleiotropic developmental abnormalities, the deletion of the RS domain specifically reduced phyB signaling and caused aberrant alternative splicing of several SR protein genes. Moreover, semi-quantitative RT-PCR analysis revealed that the alternative splicing patterns of some of the SR protein genes were altered in a red-light-dependent manner, and that these responses were reduced in both phyB and rrc1 mutants. These findings suggest that the regulation of alternative splicing by the RS domain of RRC1 plays an important role in phyB signal transduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fitocromo B/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Empalme Alternativo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clonación Molecular , Color , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Pleiotropía Genética , Luz , Fitocromo B/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación , Plásmidos/genética , Plásmidos/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia , Transformación Genética
16.
BMC Genomics ; 14: 786, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24225309

RESUMEN

BACKGROUND: In fish breeding, it is essential to discover and generate fish exhibiting an effective phenotype for the aquaculture industry, but screening for natural mutants by only depending on natural spontaneous mutations is limited. Presently, reverse genetics has become an important tool to generate mutants, which exhibit the phenotype caused by inactivation of a gene. TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetics strategy that combines random chemical mutagenesis with high-throughput discovery technologies for screening the induced mutations in target genes. Although the chemical mutagenesis has been used widely in a variety of model species and also genetic breeding of microorganisms and crops, the application of the mutagenesis in fish breeding has been only rarely reported. RESULTS: In this study, we developed the TILLING method in fugu with ENU mutagenesis and high-resolution melting (HRM) analysis to detect base pair changes in target sequences. Fugu males were treated 3 times at weekly intervals with various ENU concentrations, and then the collected sperm after the treatment was used to fertilize normal female for generating the mutagenized population (F1). The fertilization and the hatching ratios were similar to those of the control and did not reveal a dose dependency of ENU. Genomic DNA from the harvested F1 offspring was used for the HRM analysis. To obtain a fish exhibiting a useful phenotype (e.g. high meat production and rapid growth), fugu myostatin (Mstn) gene was examined as a target gene, because it has been clarified that the mstn deficient medaka exhibited double-muscle phenotype in common with MSTN knockout mice and bovine MSTN mutant. As a result, ten types of ENU-induced mutations were identified including a nonsense mutation in the investigated region with HRM analysis. In addition, the average mutation frequency in fugu Mstn gene was 1 mutant per 297 kb, which is similar to values calculated for zebrafish and medaka TILLING libraries. CONCLUSIONS: These results demonstrate that the TILLING method in fugu was established. We anticipate that this TILLING approach can be used to generate a wide range of mutant alleles, and be applicable to many farmed fish that can be chemically mutagenized.


Asunto(s)
Cruzamiento , Mutagénesis , Genética Inversa , Takifugu/genética , Alelos , Animales , Codón sin Sentido/efectos de los fármacos , Codón sin Sentido/genética , Etilnitrosourea/administración & dosificación , Femenino , Genoma/efectos de los fármacos , Masculino
18.
Nat Plants ; 9(2): 302-314, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36658391

RESUMEN

The evolution of special types of cells requires the acquisition of new gene regulatory networks controlled by transcription factors (TFs). In stomatous plants, a TF module formed by subfamilies Ia and IIIb basic helix-loop-helix TFs (Ia-IIIb bHLH) regulates stomatal formation; however, how this module evolved during land plant diversification remains unclear. Here we show that, in the astomatous liverwort Marchantia polymorpha, a Ia-IIIb bHLH module regulates the development of a unique sporophyte tissue, the seta, which is found in mosses and liverworts. The sole Ia bHLH gene, MpSETA, and a IIIb bHLH gene, MpICE2, regulate the cell division and/or differentiation of seta lineage cells. MpSETA can partially replace the stomatal function of Ia bHLH TFs in Arabidopsis thaliana, suggesting that a common regulatory mechanism underlies setal and stomatal formation. Our findings reveal the co-option of a Ia-IIIb bHLH TF module for regulating cell fate determination and/or cell division of distinct types of cells during land plant evolution.


Asunto(s)
Arabidopsis , Embryophyta , Marchantia , Marchantia/genética , Proteínas de Plantas/genética , Plantas/genética , Factores de Transcripción/metabolismo , Embryophyta/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
19.
Plant Physiol ; 156(1): 117-28, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21427282

RESUMEN

Phototropins (phot1 and phot2) are autophosphorylating blue-light receptor kinases that mediate blue-light responses such as phototropism, chloroplast accumulation, and stomatal opening in Arabidopsis (Arabidopsis thaliana). Only phot2 induces the chloroplast avoidance response under strong blue light. The serine (Ser) residues of the kinase activation loop in phot1 are autophosphorylated by blue light, and autophosphorylation is essential for the phot1-mediated responses. However, the role of autophosphorylation in phot2 remains to be determined. In this study, we substituted the conserved residues of Ser-761 and Ser-763 with alanine (S761A S763A) in the phot2 activation loop and analyzed their function by investigating the phot2-mediated responses after the transformation of phot1 phot2 double mutant with this mutant phot2 gene. Transgenic plants expressing the mutant phot2 protein exhibited impaired responses in chloroplast movement, stomatal opening, phototropic bending, leaf flattening, and plant growth; and those expressing phot2 with S761D S763D mutations showed the normal responses. Substitution of both Ser-761 and Ser-763 with alanine in phot2 did not significantly affect the kinase activity in planta. From these results, we conclude that phosphorylation of Ser-761 and Ser-763 in the activation loop may be a common primary step for phot2-mediated responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Fosfoproteínas/metabolismo , Animales , Anticuerpos , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Luz , Células del Mesófilo , Mutagénesis Sitio-Dirigida , Proteínas Mutantes , Mutación , Fenotipo , Fosfoproteínas/genética , Fosforilación , Fototropismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas , Conejos , Proteínas Recombinantes de Fusión , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Serina
20.
Front Plant Sci ; 13: 1051017, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36756228

RESUMEN

In the past two decades, many plant peptides have been found to play crucial roles in various biological events by mediating cell-to-cell communications. However, a large number of small open reading frames (sORFs) or short genes capable of encoding peptides remain uncharacterized. In this study, we examined several candidate genes for peptides conserved between two model plants: Arabidopsis thaliana and Marchantia polymorpha. We examined their expression pattern in M. polymorpha and subcellular localization using a transient assay with Nicotiana benthamiana. We found that one candidate, MpSGF10B, was expressed in meristems, gemma cups, and male reproductive organs called antheridiophores. MpSGF10B has an N-terminal signal peptide followed by two leucine-rich repeat (LRR) domains and was secreted to the extracellular region in N. benthamiana and M. polymorpha. Compared with the wild type, two independent Mpsgf10b mutants had a slightly increased number of antheridiophores. It was revealed in gene ontology enrichment analysis that MpSGF10B was significantly co-expressed with genes related to cell cycle and development. These results suggest that MpSGF10B may be involved in the reproductive development of M. polymorpha. Our research should shed light on the unknown role of LRR-only proteins in land plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA