Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioessays ; 45(8): e2300053, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37259558

RESUMEN

G protein-coupled receptors (GPCRs) constitute the largest family of transmembrane proteins and play a crucial role in regulating diverse cellular functions. They transmit their signaling via binding to intracellular signal transducers and effectors, such as G proteins, GPCR kinases, and ß-arrestins. To influence specific GPCR signaling behaviors, ß-arrestins recruit effectors to form larger signaling complexes. Intriguingly, they facilitate divergent functions for the binding to different receptors. Recent studies relying on advanced structural approaches, novel biosensors and interactome analyses bring us closer to understanding how this specificity is achieved. In this article, we share our hypothesis of how active GPCRs induce specific conformational rearrangements within ß-arrestins to reveal distinct binding interfaces, enabling the recruitment of a subset of effectors to foster specialized signaling complexes. Furthermore, we discuss methods of how to comprehensively assess ß-arrestin conformational states and present the current state of research regarding the functionality of these multifaceted scaffolding proteins.


Asunto(s)
Arrestinas , Receptores Acoplados a Proteínas G , beta-Arrestinas/metabolismo , Arrestinas/química , Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología
2.
J Biol Chem ; 299(11): 105293, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37774973

RESUMEN

ß-arrestins play a key role in G protein-coupled receptor (GPCR) internalization, trafficking, and signaling. Whether ß-arrestins act independently of G protein-mediated signaling has not been fully elucidated. Studies using genome-editing approaches revealed that whereas G proteins are essential for mitogen-activated protein kinase activation by GPCRs., ß-arrestins play a more prominent role in signal compartmentalization. However, in the absence of G proteins, GPCRs may not activate ß-arrestins, thereby limiting the ability to distinguish G protein from ß-arrestin-mediated signaling events. We used ß2-adrenergic receptor (ß2AR) and its ß2AR-C tail mutant expressed in human embryonic kidney 293 cells wildtype or CRISPR-Cas9 gene edited for Gαs, ß-arrestin1/2, or GPCR kinases 2/3/5/6 in combination with arrestin conformational sensors to elucidate the interplay between Gαs and ß-arrestins in controlling gene expression. We found that Gαs is not required for ß2AR and ß-arrestin conformational changes, ß-arrestin recruitment, and receptor internalization, but that Gαs dictates the GPCR kinase isoforms involved in ß-arrestin recruitment. By RNA-Seq analysis, we found that protein kinase A and mitogen-activated protein kinase gene signatures were activated by stimulation of ß2AR in wildtype and ß-arrestin1/2-KO cells but absent in Gαs-KO cells. These results were validated by re-expressing Gαs in the corresponding KO cells and silencing ß-arrestins in wildtype cells. These findings were extended to cellular systems expressing endogenous levels of ß2AR. Overall, our results support that Gs is essential for ß2AR-promoted protein kinase A and mitogen-activated protein kinase gene expression signatures, whereas ß-arrestins initiate signaling events modulating Gαs-driven nuclear transcriptional activity.


Asunto(s)
Proteínas de Unión al GTP , Regulación de la Expresión Génica , Receptores Adrenérgicos beta 2 , beta-Arrestinas , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestina beta 2/genética , Arrestina beta 2/metabolismo , beta-Arrestinas/genética , beta-Arrestinas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica/genética , Proteínas de Unión al GTP/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Células HEK293 , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Estructura Terciaria de Proteína , Isoformas de Proteínas , Activación Enzimática/genética
3.
J Am Soc Nephrol ; 34(4): 590-606, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36810260

RESUMEN

SIGNIFICANCE STATEMENT: G protein-coupled receptor kinase 4 (GRK4) regulates renal sodium and water reabsorption. Although GRK4 variants with elevated kinase activity have been associated with salt-sensitive or essential hypertension, this association has been inconsistent among different study populations. In addition, studies elucidating how GRK4 may modulate cellular signaling are sparse. In an analysis of how GRK4 affects the developing kidney, the authors found that GRK4 modulates mammalian target of rapamycin (mTOR) signaling. Loss of GRK4 in embryonic zebrafish causes kidney dysfunction and glomerular cysts. Moreover, GRK4 depletion in zebrafish and cellular mammalian models results in elongated cilia. Rescue experiments suggest that hypertension in carriers of GRK4 variants may not be explained solely by kinase hyperactivity; instead, elevated mTOR signaling may be the underlying cause. BACKGROUND: G protein-coupled receptor kinase 4 (GRK4) is considered a central regulator of blood pressure through phosphorylation of renal dopaminergic receptors and subsequent modulation of sodium excretion. Several nonsynonymous genetic variants of GRK4 have been only partially linked to hypertension, although these variants demonstrate elevated kinase activity. However, some evidence suggests that function of GRK4 variants may involve more than regulation of dopaminergic receptors alone. Little is known about the effects of GRK4 on cellular signaling, and it is also unclear whether or how altered GRK4 function might affect kidney development. METHODS: To better understand the effect of GRK4 variants on the functionality of GRK4 and GRK4's actions in cellular signaling during kidney development, we studied zebrafish, human cells, and a murine kidney spheroid model. RESULTS: Zebrafish depleted of Grk4 develop impaired glomerular filtration, generalized edema, glomerular cysts, pronephric dilatation, and expansion of kidney cilia. In human fibroblasts and in a kidney spheroid model, GRK4 knockdown produced elongated primary cilia. Reconstitution with human wild-type GRK4 partially rescues these phenotypes. We found that kinase activity is dispensable because kinase-dead GRK4 (altered GRK4 that cannot result in phosphorylation of the targeted protein) prevented cyst formation and restored normal ciliogenesis in all tested models. Hypertension-associated genetic variants of GRK4 fail to rescue any of the observed phenotypes, suggesting a receptor-independent mechanism. Instead, we discovered unrestrained mammalian target of rapamycin signaling as an underlying cause. CONCLUSIONS: These findings identify GRK4 as novel regulator of cilia and of kidney development independent of GRK4's kinase function and provide evidence that the GRK4 variants believed to act as hyperactive kinases are dysfunctional for normal ciliogenesis.


Asunto(s)
Quistes , Hipertensión , Humanos , Animales , Ratones , Fosforilación , Cilios/metabolismo , Pez Cebra/metabolismo , Riñón/metabolismo , Sodio/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Quistes/metabolismo , Mamíferos/metabolismo
4.
Commun Biol ; 7(1): 802, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38956302

RESUMEN

G protein-coupled receptors (GPCRs) are mainly regulated by GPCR kinase (GRK) phosphorylation and subsequent ß-arrestin recruitment. The ubiquitously expressed GRKs are classified into cytosolic GRK2/3 and membrane-tethered GRK5/6 subfamilies. GRK2/3 interact with activated G protein ßγ-subunits to translocate to the membrane. Yet, this need was not linked as a factor for bias, influencing the effectiveness of ß-arrestin-biased agonist creation. Using multiple approaches such as GRK2/3 mutants unable to interact with Gßγ, membrane-tethered GRKs and G protein inhibitors in GRK2/3/5/6 knockout cells, we show that G protein activation will precede GRK2/3-mediated ß-arrestin2 recruitment to activated receptors. This was independent of the source of free Gßγ and observable for Gs-, Gi- and Gq-coupled GPCRs. Thus, ß-arrestin interaction for GRK2/3-regulated receptors is inseparably connected with G protein activation. We outline a theoretical framework of how GRK dependence on free Gßγ can determine a GPCR's potential for biased agonism. Due to this inherent cellular mechanism for GRK2/3 recruitment and receptor phosphorylation, we anticipate generation of ß-arrestin-biased ligands to be mechanistically challenging for the subgroup of GPCRs exclusively regulated by GRK2/3, but achievable for GRK5/6-regulated receptors, that do not demand liberated Gßγ. Accordingly, GRK specificity of any GPCR is foundational for developing arrestin-biased ligands.


Asunto(s)
Quinasas de Receptores Acoplados a Proteína-G , Subunidades beta de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Humanos , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Células HEK293 , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Fosforilación , Animales , Transducción de Señal
5.
Nat Commun ; 13(1): 5638, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163356

RESUMEN

ß-arrestins mediate regulatory processes for over 800 different G protein-coupled receptors (GPCRs) by adopting specific conformations that result from the geometry of the GPCR-ß-arrestin complex. However, whether ß-arrestin1 and 2 respond differently for binding to the same GPCR is still unknown. Employing GRK knockout cells and ß-arrestins lacking the finger-loop-region, we show that the two isoforms prefer to associate with the active parathyroid hormone 1 receptor (PTH1R) in different complex configurations ("hanging" and "core"). Furthermore, the utilisation of advanced NanoLuc/FlAsH-based biosensors reveals distinct conformational signatures of ß-arrestin1 and 2 when bound to active PTH1R (P-R*). Moreover, we assess ß-arrestin conformational changes that are induced specifically by proximal and distal C-terminal phosphorylation and in the absence of GPCR kinases (GRKs) (R*). Here, we show differences between conformational changes that are induced by P-R* or R* receptor states and further disclose the impact of site-specific GPCR phosphorylation on arrestin-coupling and function.


Asunto(s)
Arrestinas , Transducción de Señal , Arrestinas/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Luciferasas , Hormona Paratiroidea/metabolismo , Fosforilación/fisiología , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestina beta 2/genética , Arrestina beta 2/metabolismo , beta-Arrestinas/metabolismo
6.
Front Cell Dev Biol ; 9: 687489, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34109182

RESUMEN

G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors and their signal transduction is tightly regulated by GPCR kinases (GRKs) and ß-arrestins. In this review, we discuss novel aspects of the regulatory GRK/ß-arrestin system. Therefore, we briefly revise the origin of the "barcode" hypothesis for GPCR/ß-arrestin interactions, which states that ß-arrestins recognize different receptor phosphorylation states to induce specific functions. We emphasize two important parameters which may influence resulting GPCR phosphorylation patterns: (A) direct GPCR-GRK interactions and (B) tissue-specific expression and availability of GRKs and ß-arrestins. In most studies that focus on the molecular mechanisms of GPCR regulation, these expression profiles are underappreciated. Hence we analyzed expression data for GRKs and ß-arrestins in 61 tissues annotated in the Human Protein Atlas. We present our analysis in the context of pathophysiological dysregulation of the GPCR/GRK/ß-arrestin system. This tissue-specific point of view might be the key to unraveling the individual impact of different GRK isoforms on GPCR regulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA