Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Phys Chem Chem Phys ; 26(15): 11459-11468, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563957

RESUMEN

Thermally activated delayed fluorescence (TADF) has emerged as one of the most promising strategies in the quest for organic light emitting diodes with optimal performance. This computational study dissects the mechanistic intricacies of the central photophysical step, reverse intersystem crossing (rISC) in N and B doped triangulenes as potential multi-resonance TADF compounds. Optimal molecular patterns conducive to efficient rISC, encompassing dopant atom size, number, and distribution, are identified. Additionally, we assess various electronic structure methods for characterizing TADF-relevant molecular systems. The findings identify the distinct role of the direct and mediated mechanisms in rISC, and provide insights into the design of advanced TADF chromophores for next-generation OLED technology.

2.
Inorg Chem ; 62(25): 9792-9806, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37315074

RESUMEN

Weakly fluorescent (Z)-4-arylidene-5-(4H)-oxazolones (1), ΦPL < 0.1%, containing a variety of conjugated aromatic fragments and/or charged arylidene moieties, have been orthopalladated by reaction with Pd(OAc)2. The resulting dinuclear complexes (2) have the oxazolone ligands bonded as a C^N-chelate, restricting intramolecular motions involving the oxazolone. From 2, a variety of mononuclear derivatives, such as [Pd(C^N-oxazolone)(O2CCF3)(py)] (3), [Pd(C^N-oxazolone)(py)2](ClO4) (4), [Pd(C^N-oxazolone)(Cl)(py)] (5), and [Pd(C^N-oxazolone)(X)(NHC)] (6, 7), have been prepared and fully characterized. Most of complexes 3-6 are strongly fluorescent in solution in the range of wavelengths from green to yellow, with values of ΦPL up to 28% (4h), which are among the highest values of quantum yield ever reported for organometallic Pd complexes with bidentate ligands. This means that the introduction of the Pd in the oxazolone scaffold produces in some cases an amplification of the fluorescence of several orders of magnitude from the free ligand 1 to complexes 3-6. Systematic variations of the substituents of the oxazolones and the ancillary ligands show that the wavelength of emission is tuned by the nature of the oxazolone, while the quantum yield is deeply influenced by the change of ligands. TD-DFT studies of complexes 3-6 show a direct correlation between the participation of the Pd orbitals in the HOMO and the loss of emission through non-radiative pathways. This model allows the understanding of the amplification of the fluorescence and the future rational design of new organopalladium systems with improved properties.

3.
J Chem Phys ; 157(17): 174107, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36347706

RESUMEN

In this work, we study the Wigner localization of interacting electrons that are confined to a quasi-one-dimensional harmonic potential using accurate quantum chemistry approaches. We demonstrate that the Wigner regime can be reached using small values of the confinement parameter. To obtain physical insight in our results, we analyze them with a semi-analytical model for two electrons. Thanks to electronic-structure properties such as the one-body density and the particle-hole entropy, we are able to define a path that connects the Wigner regime to the Fermi-gas regime by varying the confinement parameter. In particular, we show that the particle-hole entropy, as a function of the confinement parameter, smoothly connects the two regimes. Moreover, it exhibits a maximum that could be interpreted as the transition point between the localized and delocalized regimes.

4.
Angew Chem Int Ed Engl ; 61(36): e202204558, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35833924

RESUMEN

An unprecedented quantum tunneling effect has been observed in catalytic Si-H bond activations at room temperature. The cationic hydrido-silyl-iridium(III) complex, {Ir[SiMe(o-C6 H4 SMe)2 ](H)(PPh3 )(THF)}[BArF 4 ], has proven to be a highly efficient catalyst for the hydrolysis and the alcoholysis of organosilanes. When triethylsilane was used as a substrate, the system revealed the largest kinetic isotopic effect (KIESi-H/Si-D =346±4) ever reported for this type of reaction. This unexpectedly high KIE, measured at room temperature, together with the calculated Arrhenius preexponential factor ratio (AH /AD =0.0004) and difference in the observed activation energy [(E a D -E a H )=34.07 kJ mol-1 ] are consistent with the participation of quantum tunneling in the catalytic process. DFT calculations have been used to unravel the reaction pathway and identify the rate-determining step. Aditionally, isotopic effects were considered by different methods, and tunneling effects have been calculated to be crucial in the process.

5.
Chemistry ; 27(18): 5782-5789, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33433940

RESUMEN

The site-selective functionalization of C-H bonds within a complex molecule remains a challenging task of capital synthetic importance. Herein, an unprecedented Pd-catalyzed C(sp2 )-H alkoxycarbonylation of phenylalanine derivatives and other amines featuring picolinamide as the directing group (DG) is reported. This oxidative coupling is distinguished by its scalability, operational simplicity, and avoids the use of toxic carbon monoxide as the C1 source. Remarkably, the easy cleavage of the DG enables the efficient assembly of isoindolinone compounds. Density Functional Theory calculations support a PdII /PdIV catalytic cycle.

6.
J Am Chem Soc ; 142(42): 17989-17996, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32941015

RESUMEN

We report herein on a NMR-based enantiospecific response for a family of optically active metal-organic frameworks. Cross-polarization of the 1H-13C couple was performed, and the intensities of the 13C nuclei NMR signals were measured to be different for the two enantiomers. In a direct-pulse experiment, which prevents cross-polarization, the intensity difference of the 13C NMR signals of the two nanostructured enantiomers vanished. This result is due to changes of the nuclear spin relaxation times due to the electron spin spatial asymmetry induced by chemical bond polarization involving a chiral center. These experiments put forward on firm ground that the chiral-induced spin selectivity effect, which induces chemical bond polarization in the J-coupling, is the mechanism responsible for the enantiospecific response. The implications of this finding for the theory of this molecular electron spin polarization effect and the development of quantum biosensing and quantum storage devices are discussed.


Asunto(s)
Estructuras Metalorgánicas/química , Espectroscopía de Resonancia Magnética , Estructuras Metalorgánicas/síntesis química , Fenómenos Ópticos
7.
J Org Chem ; 85(20): 13133-13140, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32940464

RESUMEN

Despite the widespread use of cross-dehydrogenative couplings in modern organic synthesis, mechanistic studies are still rare in the literature and those applied to α-amino carbonyl compounds remain virtually unexplored. Herein, the mechanism of Co-catalyzed cross-dehydrogenative couplings of N-aryl glycinates with indoles is described. Density functional theory studies supported the formation of an imine-type intermediate as the more plausible transient electrophilic species. Likewise, key information regarding the role of the N-aryl group and free NH motif within the reaction outcome has been gained, which may set the stage for further developments in this field of expertise.

8.
Phys Chem Chem Phys ; 22(28): 15908-15918, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32643721

RESUMEN

The present computational study explores the nature of spin singlet and triplet electronic excitations in π-stacked aggregates of perylene-3,4:9,10-bis(dicarboximide) (PDI) derivatives. Concretely, we focus on the slip-stacked aggregation motive in the crystal structure of tetraphenyl PDI. Our study relies on electronic structure calculations of molecules, dimers and oligomers at the DFT and TDDFT level, and the characterization of excited states in terms of local excitations (LE) and charge transfer (CT) states. We rationalize the role of inter-chromophore CT states in the lowest singlets and triplets of PDI aggregates in terms of excitonic couplings and diabatic contributions. In this case, LE/LE and LE/CT couplings are both strong, but while the former induce H-aggregation, the latter promotes the stabilization of the optical state (J-aggregation). Hence, the photophysics of tetraphenyl PDI emerge as the competition between these two interactions. Interestingly, CT terms constitute about half of the transition to optical states, but they barely contribute to the nature of dark transitions. In the singlet state, this can be rationalized by the relation between electron and hole couplings. Triplet excitons, despite holding strong superexchange interactions, present a much larger LE/CT energy gap than in the singlet, restraining LE/CT mixings. These properties can be sensibly modified upon molecular distortions that tune diabatic energies and couplings. The conclusions of our study provide a deep understanding of aggregation effects, in particular for the much less explored triplet excitons. Moreover, they can be extended to π-stacked aggregates of PDI derivatives and generalized to the case of conjugated organic chromophores.

9.
J Org Chem ; 84(7): 4200-4210, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30848131

RESUMEN

Self-healing materials are a very promising kind of materials due to their capacity to repair themselves. Among others, dichalcogenide-based materials are widely studied due to their dynamic covalent bond nature. Recently, the reaction mechanism occurring in these materials was characterized both theoretically and experimentally. In this vein, a theoretical protocol was established in order to predict further improvements. Among these improvements, the use of diselenides instead of disulfides appears to be one of the paths to enhance these properties. Nevertheless, the physicochemical aspects of these improvements are not completely clear. In this work, the self-healing properties of several disulfides, diselenides, and mixed S-Se materials have been considered by means of computational simulations. Among all the tested species, diphenyl diselenide based materials appear to be the most promising ones due to the decrease on the reaction barriers, instead of weaker diselenide bonds, as thought up to now. Moreover, the radical formation needed in this process would also be enhanced by the fact that these species are able to absorb visible light. In this manner, at room conditions, selenyl radicals would be formed by both thermal dissociation and photodissociation. This fact, together with the lower energetic barriers needed for the diselenide exchange, makes diphenyl diselenides ideal for self-healing materials.

10.
J Am Chem Soc ; 140(40): 12862-12869, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30211547

RESUMEN

The emission of a bright blue fluorescence is a unique feature common to the vast variety of polymer carbon dots (CDs) prepared from carboxylic acid and amine precursors. However, the difficulty to assign a precise chemical structure to this class of CDs yet hampers the comprehension of their underlying luminescence principle. In this work, we show that highly blue fluorescent model types of CDs can be prepared from citric acid and ethylenediamine through low temperature synthesis routes. Facilitating controlled polycondensation processes, the CDs reveal sizes of 1-1.5 nm formed by a compact network of short polyamide chains of about 10 monomer units. Density functional theory calculations of these model CDs uncover the existence of a spatially separated highest occupied molecular orbital and a lowest unoccupied molecular orbital located at the amide and carboxylic groups, respectively. Photoinduced charge transfer between these groups thus constitutes the origin of the strong blue fluorescence emission. Hydrogen-bond-mediated supramolecular interactions between the polyamide chains enabling a rigid network structure further contribute to the enhancement of the radiative process. Moreover, the photoinduced charge transfer processes in the polyamide network structure easily explain the performance of CDs in applications as revealed in studies on metal ion sensing. These findings thus are of general importance to the further development of polymer CDs with tailored properties as well as for the design of technological applications.

11.
Phys Chem Chem Phys ; 19(28): 18461-18470, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28681872

RESUMEN

In this work, a theoretical protocol based on classical molecular dynamics has been defined, in order to study weak non-covalent interactions in diphenyl disulfide based compounds. This protocol is then used to study the influence of hydrogen bonds and π-π stacking in four selected cases, namely, monosubstituted and amine ortho trisubstituted urea and urethane-based diphenyl disulfides. In all cases, it has been observed that hydrogen bonds are much more relevant than π-π stacking, which has little influence. In addition, hydrogen bonds are the responsible to maintain the polymeric chains close, so that the disulfides may reach the reacting region, even in urethane-based materials, where the lower amount of hydrogen bonds formed make the chains more flexible and mobile. Combining the results obtained by classical molecular dynamics with those obtained earlier by means of quantum mechanics, we conclude that there are two main factors that are relevant to the self-healing properties of disulfide-based materials: firstly, the capacity to generate sulfenyl radicals by breaking the disulfide S-S bond and, secondly, the ability of these radicals to attack neighboring disulfides. The former is dominated by the bond dissociation energy of the S-S bond, while the latter is strongly influenced by two other factors. On the one hand, the hydrogen bonding interactions established between chains, and on the other, the energy barriers for the attack of sulfur radicals to neighbor disulfides. We have defined three new parameters to estimate the influence of these features, with the aim of predicting the self-healing capacity of disulfides and related materials, which will help experimentalists in the development of improved materials.

12.
Phys Chem Chem Phys ; 19(31): 20533-20540, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28730196

RESUMEN

This work presents the mechanism of the photoinduced generation of reactive oxygen species (ROS) by paramagnetic copper porphyrins in aqueous solution. Electronic structure calculations within the framework of the (time-dependent) density functional theory, (TD)DFT, reveal the details regarding the development of the atomistic and electronic structures of the copper porphyrin in solution along the set of chemical reactions accessible upon photoactivation. This study identifies the key parameters controlling the feasibility of the various reaction pathways that drive the formation of specific reactive oxygen species, ROS, i.e. superoxide, peroxyl and hydroxyl radicals. An important outcome of our results is the rationalization of how the water solvent molecules play a crucial role in most steps of the overall reaction. The present study is illustrated by focusing on one specific copper porphyrin for which precise experimental data have recently been measured, and can readily be generalized to the whole family of paramagnetic porphyrins. The conclusions of this work shed light on the rational design of metalloporphyrins as photosensitizers for photodynamic therapy.

13.
Angew Chem Int Ed Engl ; 56(51): 16212-16217, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044965

RESUMEN

New anthanthrone-based polycyclic scaffolds possessing peripheral crowded quinodimethanes have been prepared. While the compounds adopt a closed-shell butterfly-shaped structure in the ground state, a curved-to-planar fluxional inversion is accessible with a low energy barrier through a biradicaloid transition state. Inversion is primarily driven by the release of strain associated with steric hindrance at the peri position of the anthanthrone core; a low-lying diradical state is accessible through planarization of the core, which is attained in solution at moderate temperatures. The most significant aspect of this transformation is that planarization is also achieved by application of mild pressure in the solid state, wherein the diradical remains kinetically trapped. Complementary information from quantum chemistry, 1 H NMR, and Raman spectroscopies, together with magnetic experiments, is consistent with the formation of a nanographene-like structure that possesses radical centers localized at the exo-anthanthrone carbons bearing phenyl substituents.

14.
Phys Chem Chem Phys ; 18(3): 1758-70, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26675660

RESUMEN

Self-healing materials are a very promising kind of materials due to their capacity to repair themselves. Among others, diphenyl disulfide-based compounds (Ph2S2) appear to be among the best candidates to develop materials with optimum self-healing properties. However, few is known regarding both the reaction mechanism and the electronic structure that make possible such properties. In this vein, theoretical approaches are of great interest. In this work, we have carried out theoretical calculations on a wide set of different disulfide compounds, both aromatic and aliphatic, in order to elucidate the prevalent reaction mechanism and the necessary electronic conditions needed for improved self-healing properties. Two competitive mechanisms were considered, namely, the metathesis and the radical-mediated mechanism. According to our calculations, the radical-mediated mechanism is the responsible for this process. The formation of sulfenyl radicals strongly depends on the S-S bond strength, which can be modulated chemically by the use of proper derivatives. At this point, amino derivatives appear to be the most promising ones. In addition to the S-S bond strength, hydrogen bonding between disulfide chains seems to be relevant to favour the contact among disulfide units. This is crucial for the reaction to take place. The calculated hydrogen bonding energies are of the same order of magnitude as the S-S bond energies. Finally, reaction barriers have been analysed for some promising candidates. Two reaction mechanisms were compared, namely, the [2+2] metathesis reaction mechanism and the [2+1] radical-mediated mechanism. No computational evidence for the existence of any transition state for the metathesis mechanism was found, which indicates that the radical-mediated mechanism is the one responsible in the self-healing process of these materials. Interestingly, the calculated reaction barriers are around 10 kcal mol(-1) regardless the substituent employed. All these results suggest that the radical formation and the structural role of the hydrogen bonding prevale over kinetics. Having this in mind, as a conclusion, some new compounds are proposed for the design of future self-healing materials with improved features.

15.
Phys Chem Chem Phys ; 18(45): 30972-30981, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27805199

RESUMEN

Hydroxyl radical (˙OH) is known to be one of the most reactive species. In this work, the hydrogen abstraction by ˙OH from Cα and Cß atoms of all amino acids is studied in the framework of density functional theory as this is the most favorable reaction mechanism when this kind of radical attacks a protein. From the myriad routes that the oxidation of a protein by a ˙OH radical may follow, fragmentation of the protein is one of the most damaging ones as it hampers the normal function of the protein. Therefore, cleavages of the Cα-C and Cα-N backbone bonds have been investigated as the second step of the mechanism. To the best of our knowledge, this is the first time that this reaction pathway has been systematically studied for all natural amino acids. The study includes the effects that the solvent dielectrics or the conformation of the peptide model employed has on the reaction. Interestingly, the results indicate that the nature of the side chain has little effect on the H abstraction reaction, and that for most of amino acids the attack at the Cα atom is favored over the attack at the Cß atom. The origin of this preference relies on the larger capability of the formed radical intermediate to delocalize the unpaired electron, thus maximizing the captodative effect. Moreover, the reaction is more favorable when the reactant presents a ß-sheet conformation, with a completely planar peptide backbone. With respect to the homolytic splitting of the Cα-C and Cα-N bonds, the former is favorable for almost all amino acids, whereas Ser and Thr are the only amino acids favoring the latter. These results agree with previous investigations but an accurate description of the electronic density analysis performed indicates that the origin of the different reaction pathway preferences relies on a large stabilization of the product rather than bond weakening at the radical intermediate.


Asunto(s)
Aminoácidos/química , Conformación Molecular , Conformación Proteica , Proteínas/química , Electrones , Hidrógeno , Radical Hidroxilo , Oxidación-Reducción , Péptidos/química
16.
J Chem Phys ; 144(11): 114302, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27004871

RESUMEN

The structural and optical properties of both the naked and passivated bimetallic Al5Au5 nanoclusters have been analyzed based on data obtained from ab initio density functional theory and quantum molecular dynamics simulations. It has been found that the Al5Au5 nanocluster possesses a hollow shaped minimum energy structure with segregated Al and Au layered domains, the former representing the electrophilic domain and the latter the nucleophilic domain. In particular, it has been shown that alkali metal cations attach in the nucleophilic domain and hop from one Au site to the next one in the picoseconds time scale, while anions are bound tightly to the Al atoms of the electrophilic domain. Simulating annealing studies are very suggestive of the proneness of the nanocluster towards coalescence into large cluster units, when the cluster is left unprotected by appropriate ligands. Further passivation studies with NaF salt suggest, nonetheless, the possibility of the isolation of the Al5Au5 cluster in molten salts or ionic liquids.

17.
J Phys Chem A ; 118(24): 4309-14, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24841137

RESUMEN

The global minima of the cluster anions with the generic chemical formula (XAl12)²â», where X = Be, Mg, Ca, Sr, Ba, and Zn, are determined by an extensive search of their potential energy surfaces using the Gradient Embedded Genetic Algorithm (GEGA). All the characterized global minima have an icosahedral-like structure, resembling that of the Al13⁻ cluster. These cages comprise closed-shell electronic configurations with 40 electrons, therefore, in accordance to the jellium model, they are predicted to be highly stable and amenable to experimental detection. The two preferred sites for the dopant species, at the center and at surface of the icosahedral cage, are stabilized depending on the atomic radius of X. Thus, while the small dopants (X = Be, Zn) sit preferably at the center of the cage, the preferred site for X = Mg, Ca, Sr, and Ba is at the surface. Since these dianions are not stable towards electron detachment, one Li cation is added in order to yield stable systems. Our computations show that in the global minimum form of Li(XAl12)⁻, the lithium cation, ionically bonded to the Al atoms, does not change the structure of the (XAl12)²â» core.

18.
Chemistry ; 19(27): 8832-8, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23703981

RESUMEN

The study of the reactions of water and hydrogen sulfide with palladium and platinum cations has been completed in this work, in both low- and high-spin states. Our calculations predict that only the formation of platinum sulfide is exothermic (in both spin states), whereas for the remaining species the oxides and sulfides are found to be more reactive than their corresponding bare metal cations. An in-depth analysis of the reaction paths leading to metal oxide and sulfide species is given, including various minima, and several important transition states. All results have been compared with existing experimental and theoretical data, and earlier works covering the reaction of nickel cation with water and hydrogen sulfide to observe the trends for the group 10 transition metals.

19.
Phys Chem Chem Phys ; 15(26): 10996-1005, 2013 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-23712668

RESUMEN

Motivated by the recent experiments by Wang et al. (Angew. Chem., Int. Ed. 2012, 51, 6154-6157), in which the alkylamine-capped magic-size (CdSe)13 has been isolated for the first time, we report on the computational modeling of the putative low-lying isomers of (CdSe)13, both bare and ligand-protected. According to Density Functional Theory (DFT) calculations, the core@cage configuration Se@Cd13Se12, consisting of a Se atom incarcerated in the center of a puckered Cd13Se12 cage, lies lower in energy than fullerene- and wurtzite-like structures. Methylamine-capped nanoclusters present average bond energies per ligand of about 20 kcal mol(-1), while bond energy decomposition schemes show this interaction to be mostly electrostatically-driven. The computed Time-Dependent-DFT (TDDFT) spectrum of the lowest-lying methylamine-protected (CdSe)13 isomer essentially coincides with the experiment, with a notable blueshift of the absorption features induced by the ligands. The LUMO has been found to be the acceptor orbital for all the lowest-lying electronic excitations, in both the bare and methylamine-capped clusters, which could explain the narrow emission profiles inherent in semiconductor nanostructures. In addition, the attachment of pyridine and aniline molecules has been evaluated. Interestingly, the molecular orbitals of these aromatic amines located on the edges of the valence and conduction bands may act as trap states, in agreement with experimental evidences. In the particular case of pyridine molecules, unoccupied orbitals intrude into the HOMO-LUMO gap of the cluster.

20.
J Chem Phys ; 138(15): 151102, 2013 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-23614404

RESUMEN

The natural orbital functional theory admits two unique representations in the orbital space. On the one hand, we have the natural orbitals themselves that minimize the energy functional, and which afford for a diagonal one-particle reduced density matrix but not for a diagonal Lagrangian orbital energy multipliers matrix. On the other hand, since it is possible to reverse the situation but only once the energy minimization has been achieved, we have the so-called canonical representation, where the Lagrangian orbital energy multipliers matrix is diagonal but the one-particle reduced density matrix is not. Here it is shown that the former representation, the natural orbital representation, accounts nicely for the quadrupole bond character of the ground states of C2, BN, CB(-), and CN(+), and for the double bond order character of the isovalent (1)Σg (+) state of Si2. Similarly, the canonical orbital representation accounts correctly for the ionization spectra of all these species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA