RESUMEN
Background: Behavioral tasks focusing on different subdomains of reward processing may provide more objective and quantifiable measures of anhedonia and impaired motivation compared with clinical scales. Typically, single tasks are used in relatively small studies to compare cases and controls in one indication, but they are rarely included in larger multisite trials. This is due to limited systematic standardization as well as the challenges of deployment in international studies and stringent adherence to the high regulatory requirements for data integrity. The Reward Task Optimization Consortium (RTOC) was formed to facilitate operational implementation of reward processing tasks, making them suitable for use in future large-scale, international, multisite drug development studies across multiple indications. The RTOC clinical study aims to conduct initial optimization of a set of tasks in patients with major depressive disorder (MDD) or schizophrenia (SZ). Methods: We will conduct a multicenter study across four EU countries. Participants (MDD = 37, SZ = 37, with ≤80 age- and gender-matched healthy volunteers) will attend a study visit comprising screening, self-report and clinically rated assessments of anhedonia and symptom severity, and three reward processing tasks; specifically, the Grip Strength Effort task, the Doors task, and the Reinforcement Learning Working Memory task. The Grip Strength Effort and Doors tasks include simultaneous electroencephalography/event-related potential recordings. Outcomes will be compared using a two-way group design of MDD and SZ with matched controls, respectively. Further analyses will include anhedonia assessment scores as covariates. Planned analyses will assess whether our findings replicate previously published data, and multisite deployment will be evaluated through assessments of quality and conduct. A subset of participants will complete a second visit, to assess test-retest reliability of the task battery. Discussion: This study will evaluate the operational deployment of three reward processing tasks to the regulatory standards required for use in drug development trials. We will explore the potential of these tasks to differentiate patients from controls and to provide a quantitative marker of anhedonia and/or impaired motivation, establishing their usefulness as endpoints in multisite clinical trials. This study should demonstrate where multifaceted reward deficits are similar or divergent across patient populations. Registration: ClinicalTrials.gov (NCT04024371).
RESUMEN
Arctic ecosystems are subjected to strong environmental constraints that prevent both the colonization and development of many organisms. In Svalbard, few aphid species have established permanent populations. These high arctic aphid species have developed peculiar life-history traits such as shortened life cycles and reduced dispersal capacities. Here, we present data on the distribution and population genetics of Acyrthosiphon svalbardicum in Spitsbergen, the main island of the Svalbard archipelago, and compared its genetic structure with that of its close relative Acyrthosiphon brevicorne, sampled in the top of Scandinavian mainland. We found that A. svalbardicum is common but heterogeneously distributed along the west coast of Spitsbergen. We recorded this species up to 79°12', which constitutes the northernmost location for any aphid. Genetic structure examined using microsatellite markers showed more pronounced spatial differentiation in A. svalbardicum than in A. brevicorne populations, presumably due to reduced dispersal capacities in the former species. Although populations of A. brevicorne and A. svalbardicum were well-delineated at nuclear loci, they shared similar cytoplasmic DNA haplotypes as revealed by sequence analysis of two DNA barcodes. These results raise questions about whether these two taxa are different species, and the colonization sources and history of the Svalbard archipelago by A. svalbardicum.
RESUMEN
Autoantibodies in vitro modulating the M2 acetylcholine receptor (M2ACh-R) were observed in patients with idiopathic dilated cardiomyopathy (IDC) or Chagas' cardiomyopathy (ChC). We investigated the in vivo consequences on heart rate of such antibodies in mice immunized with a peptide derived from the second extracellular loop of the M2ACh-R compared with mice immunized with an irrelevant peptide. Sera of mice immunized with the M2ACh-R-derived peptide recognized the M2ACh-R on immunoblots and enhanced agonist activity of carbachol toward the M2AChR transfected in CHO cells. In vivo, no difference could be shown in heart rate or heart rate variability between the two groups of mice. The decrease in heart rate induced by carbachol was more pronounced, however, in the M2ACh-R immunized mice. The increase in heart rate induced by atropine, gallamine, and isoproterenol was significantly attenuated in the M2ACh-R immunized mice. Analysis of heart rate variability further argued for an increased parasympathetic response to different drugs in the M2ACh-R immunized mice. Antibodies raised against the M2AChR can behave as positive M2AChR allosteric modulators in vivo. They might be protective in boosting the activity of the parasympathetic drive to the heart, especially in patients with a high sympathetic tone.
Asunto(s)
Anticuerpos/inmunología , Frecuencia Cardíaca/fisiología , Receptor Muscarínico M2/inmunología , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Anticuerpos/sangre , Anticuerpos/fisiología , Atropina/farmacología , Células CHO , Carbacol/farmacología , Cricetinae , Cricetulus , AMP Cíclico/análisis , Electrocardiografía , Femenino , Trietyoduro de Galamina/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Inmunización , Isoproterenol/farmacología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Sistema Nervioso Parasimpático/fisiología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/fisiología , TransfecciónRESUMEN
There is significant interest in the functional significance and the therapeutic value of slow-wave sleep (SWS)-enhancing drugs. A prerequisite for studies of the functional differences is characterization of the electroencephalography (EEG) spectra following treatment in relevant patients. We evaluate for the first time gaboxadol and zolpidem treatments in insomniac patients using power spectra analysis. We carried out two randomized, double-blind, crossover studies. Study 1, 38 patients received gaboxadol 10 mg and 20 mg and zolpidem 10 mg; study 2, 23 patients received gaboxadol 5 mg and 15 mg. Treatments were administered during two nights and compared with placebo. Gaboxadol 10, 15 and 20 mg enhanced slow-wave activity (SWA) and theta power. In 1 Hz bins gaboxadol 10 and 20 mg enhanced power up to 9 Hz. In study 2, 15 mg gaboxadol showed a similar effect pattern. Zolpidem suppressed theta and alpha power, and increased sigma power, with no effect on SWA. In the 1 Hz bins zolpidem suppressed power between 5-10 Hz. Gaboxadol dose-dependently increased SWA and theta power in insomniac patients. In contrast, zolpidem did not affect SWA, reduced theta and alpha activity and enhanced sigma power. EEG spectral power differences may be consequences of the different mechanisms of action for zolpidem and the SWS-enhancing agent, gaboxadol.
Asunto(s)
Electroencefalografía/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Isoxazoles/farmacología , Piridinas/farmacología , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Sueño/efectos de los fármacos , Adolescente , Adulto , Anciano , Ondas Encefálicas/efectos de los fármacos , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Humanos , Persona de Mediana Edad , ZolpidemRESUMEN
Antibodies directed against the second extracellular loop of G protein-coupled receptors are known to have functional activities. From a partial agonist monoclonal antibody directed against the M2 muscarinic receptor, we constructed and produced a single chain variable fragment with high affinity for its target epitope. The fragment is able to recognize its receptor on Chinese hamster ovary cells transfected with the M2 muscarinic acetylcholine receptor to block the effect of carbachol on this receptor and to exert an inverse agonist activity on the basal activity of the receptor. The antibody fragment is also able to increase the basal rhythm of cultured neonatal rat cardiomyocytes and to inhibit in a non-competitive manner the negative chronotropic effect of carbachol. This antibody fragment is able to exert its inverse agonist activity in vivo on mouse heart activity. The immunological strategy presented here could be useful to develop specific allosteric inverse agonist reagents for G protein-coupled receptors.
Asunto(s)
Receptor Muscarínico M2/química , Sitio Alostérico , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Secuencia de Bases , Unión Competitiva , Western Blotting , Células CHO , Carbacol/farmacología , Células Cultivadas , Cricetinae , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta Inmunológica , Electroforesis en Gel de Poliacrilamida , Epítopos/química , Escherichia coli/metabolismo , Fragmentos Fab de Inmunoglobulinas , Inmunohistoquímica , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Miocitos Cardíacos/metabolismo , Nucleótidos/química , Péptidos/química , Estructura Terciaria de Proteína , Ratas , Receptor Muscarínico M2/metabolismo , Receptores Colinérgicos/química , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie , Factores de Tiempo , TransfecciónRESUMEN
In the present study we investigate whether alterations of sleep propensity or of wake propensity are implicated in sleep initiation disturbances encountered in major depressive insomnia and in primary insomnia. For this purpose, the time course of electroencephalogram (EEG) power density during the period preceding sleep onset and during the first non-rapid eye movement (REM) period was examined in three age and gender matched groups of 10 women and 11 men (healthy controls, primary insomniacs and depressive insomniacs). In contrast to healthy controls and depressive insomniacs, patients with primary insomnia did not experience a gradual decrease of their alpha and beta1 power during the sleep onset period and had a lower delta activity in the 5 min preceding sleep onset. Compared with the two other groups, depressive patients exhibit less dynamic changes in slow wave activity during the first non-REM period. The present results suggest that hyperarousal (high 'Process W') may mainly be implicated in the sleep initiation difficulties of primary insomniacs whereas the homeostatic sleep regulation process seems to be partially maintained. In our major depressed patients, the sleep initiation disturbances appeared to relate to a lower sleep pressure (low 'Process S') rather than to hyperarousal. This study supports the idea that different mechanisms are implicated in sleep disturbances experienced by primary insomniacs and major depressive insomniacs.