RESUMEN
Despite several approved therapies, multiple myeloma (MM) remains an incurable disease with high unmet medical need. "Off-the-shelf" T-cell bispecific antibodies (TCBs) targeting BCMA and GPRC5D have demonstrated high objective response rates (ORR) in heavily pre-treated MM patients, however, primary resistance, short duration of response and relapse driven by antigen shift frequently occurs. Although GPRC5D represents the most selective target in MM, recent findings indicate antigen loss occurs more frequently than with BCMA. Thus, anti-GPRC5D immunotherapies must hit hard during a short period of time to kill as many myeloma cells as possible. Here, we characterize forimtamig, a novel GPRC5D-targeting TCB with 2+1 format, using preclinical models of MM. Bivalent binding of forimtamig to the N-terminus of GPRC5D confers higher affinity as compared to classical 1+1 TCB formats correlating with formation of more stable immunological synapses and higher potency in tumor cell killing and T cell activation. Using an orthotopic mouse model of MM, forimtamig recruited T effector cells to the bone marrow and induced rapid tumor killing even after the introduction of step-up dosing to mitigate cytokine release. Combination of forimtamig with standard-of-care (SoC) agents including anti-CD38 antibodies, immunomodulatory drugs and proteasome inhibitors improved depth and duration of response. The combination of forimtamig with novel therapeutic agents including BCMA-TCB and Cereblon E3 Ligase Modulatory Drugs (CELMoDs) was potent and prevented occurrence of GPRC5D-negative tumor relapse. Forimtamig is currently being evaluated in Phase 1 clinical trials in relapsed and refractory myeloma (RRMM) patients for monotherapy and in combination treatments. NCT04557150.
RESUMEN
Group 1 innate lymphoid cells (ILCs) comprising circulating natural killer (cNK) cells and tissue-resident ILC1s are critical for host defense against pathogens and tumors. Despite a growing understanding of their role in homeostasis and disease, the ontogeny of group 1 ILCs remains largely unknown. Here, we used fate mapping and single-cell transcriptomics to comprehensively investigate the origin and turnover of murine group 1 ILCs. Whereas cNK cells are continuously replaced throughout life, we uncovered tissue-dependent development and turnover of ILC1s. A first wave of ILC1s emerges during embryogenesis in the liver and transiently colonizes fetal tissues. After birth, a second wave quickly replaces ILC1s in most tissues apart from the liver, where they layer with embryonic ILC1s, persist until adulthood, and undergo a specific developmental program. Whereas embryonically derived ILC1s give rise to a cytotoxic subset, the neonatal wave establishes the full spectrum of ILC1s. Our findings uncover key ontogenic features of murine group 1 ILCs and their association with cellular identities and functions.
Asunto(s)
Inmunidad Innata , Células Asesinas Naturales , Animales , Feto , Hígado , RatonesRESUMEN
Aging exerts profound and paradoxical effects on the immune system, at once impairing proliferation, cytotoxicity and phagocytosis, and inducing chronic inflammation. Previous studies have focused on individual tissues or cell types, while a comprehensive multisystem study of tissue-resident and circulating immune populations during aging is lacking. Here we reveal an atlas of age-related changes in the abundance and phenotype of immune cell populations across 12 mouse tissues. Using cytometry-based high parametric analysis of 37 mass-cytometry and 55 spectral flow-cytometry parameters, mapping samples from young and aged animals revealed conserved and tissue-type-specific patterns of both immune atrophy and expansion. We uncovered clear phenotypic changes in both lymphoid and myeloid lineages in aged mice, and in particular a contraction in natural killer cells and plasmacytoid dendritic cells. These changes correlated with a skewing towards myelopoiesis at the expense of early lymphocyte genesis in aged mice. Taken together, this atlas represents a comprehensive, systematic and thorough resource of the age-dependent alterations of the mammalian immune system in lymphoid, barrier and solid tissues.
Asunto(s)
Células Asesinas Naturales , Fagocitosis , Ratones , Animales , Citometría de Flujo , Inflamación , Fenotipo , MamíferosRESUMEN
PD-L1/PD-1 blocking antibodies have demonstrated therapeutic efficacy across a range of human cancers. Extending this benefit to a greater number of patients, however, will require a better understanding of how these therapies instigate anticancer immunity. Although the PD-L1/PD-1 axis is typically associated with T cell function, we demonstrate here that dendritic cells (DCs) are an important target of PD-L1 blocking antibody. PD-L1 binds two receptors, PD-1 and B7.1 (CD80). PD-L1 is expressed much more abundantly than B7.1 on peripheral and tumor-associated DCs in patients with cancer. Blocking PD-L1 on DCs relieves B7.1 sequestration in cis by PD-L1, which allows the B7.1/CD28 interaction to enhance T cell priming. In line with this, in patients with renal cell carcinoma or non-small cell lung cancer treated with atezolizumab (PD-L1 blockade), a DC gene signature is strongly associated with improved overall survival. These data suggest that PD-L1 blockade reinvigorates DC function to generate potent anticancer T cell immunity.