Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Braz J Microbiol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985434

RESUMEN

An Actinomycetia isolate, designated as PBR19, was derived from the rhizosphere soil of Pobitora Wildlife Sanctuary (PWS), Assam, India. The isolate, identified as Streptomyces sp., shares a sequence similarity of 93.96% with its nearest type strain, Streptomyces atrovirens. This finding indicates the potential classification of PBR19 as a new taxon within the Actinomycetota phylum. PBR19 displayed notable antibacterial action against some ESKAPE pathogens. The ethyl acetate extract of PBR19 (EtAc-PBR19) showed the lowest minimum inhibitory concentration (MIC) of ≥ 0.195 µg/mL against Acinetobacter baumannii ATCC BAA-1705. A lower MIC indicates higher potency against the tested pathogen. Scanning electron microscope (SEM) findings revealed significant changes in the cytoplasmic membrane structure of the pathogen. This suggests that the antibacterial activity may be linked to the disruption of the microbial membrane. The predominant chemical compound detected in the EtAc-PBR19 was identified as phenol, 3,5-bis(1,1-dimethylethyl), comprising 48.59% of the area percentage. Additionally, PBR19 was found to contain the type II polyketide synthases (PKS type II) gene associated with antibiotic synthesis. The predicted gene product of PKSII was identified as the macrolide antibiotic Megalomicin A. The taxonomic distinctiveness, potent antibacterial effects, and the presence of a gene associated with antibiotic synthesis suggest that PBR19 could be a valuable candidate for further exploration in drug development and synthetic biology. The study contributes to the broader understanding of microbial diversity and the potential for discovering bioactive compounds in less-explored environments.

2.
Metabolites ; 13(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37623855

RESUMEN

Actinomycetia are known for their ability to produce a wide range of bioactive secondary metabolites having significant therapeutic importance. This study aimed to explore the potential of actinomycetia as a source of bioactive compounds with antimicrobial properties against multi-drug-resistant (MDR) clinical pathogens. A total of 65 actinomycetia were isolated from two unexplored forest ecosystems, namely the Pobitora Wildlife Sanctuary (PWS) and the Deepor Beel Wildlife Sanctuary (DBWS), located in the Indo-Burma mega-biodiversity hotspots of northeast India, out of which 19 isolates exhibited significant antimicrobial activity. 16S rRNA gene sequencing was used for the identification and phylogenetic analysis of the 19 potent actinomycetia isolates. The results reveal that the most dominant genus among the isolates was Streptomyces (84.21%), followed by rare actinomycetia genera such as Nocardia, Actinomadura, and Nonomuraea. Furthermore, seventeen of the isolates tested positive for at least one antibiotic biosynthetic gene, specifically type II polyketide synthase (PKS-II) and nonribosomal peptide synthetases (NRPSs). These genes are associated with the production of bioactive compounds with antimicrobial properties. Among the isolated strains, three actinomycetia strains, namely Streptomyces sp. PBR1, Streptomyces sp. PBR36, and Streptomyces sp. DBR11, demonstrated the most potent antimicrobial activity against seven test pathogens. This was determined through in vitro antimicrobial bioassays and the minimum inhibitory concentration (MIC) values of ethyl acetate extracts. Gas chromatography-mass spectrometry (GS-MS) and whole-genome sequencing (WGS) of the three strains revealed a diverse group of bioactive compounds and secondary metabolite biosynthetic gene clusters (smBGCs), respectively, indicating their high therapeutic potential. These findings highlight the potential of these microorganisms to serve as a valuable resource for the discovery and development of novel antibiotics and other therapeutics with high therapeutic potential.

3.
Microbiol Spectr ; : e0348922, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719230

RESUMEN

The Actinomycetia isolate PBR11 was isolated from the forest rhizosphere soil of Pobitora Wildlife Sanctuary (PWS), Assam, India. The isolate was identified as Streptomyces sp. with 92.91% sequence similarity to their closest type strain, Streptomyces atrovirens NRRL B-16357 DQ026672. The strain demonstrated significant antimicrobial activity against 19 test pathogens, including multidrug-resistant (MDR) clinical isolates and dermatophytes. Phenol, 2,5-bis(1,1-dimethylethyl), is the major chemical compound detected by gas chromatography-mass spectrometry in the ethyl acetate extract of PBR11 (EtAc-PBR11). The presence of the PKS type II gene (type II polyketide synthases) and chitinase gene suggested that it has been involved in the production of antimicrobial compounds. Metabolic profiling of the EtAc-PBR11 was performed by thin-layer chromatography and flash chromatography resulted in the extraction of two bioactive fractions, namely, PBR11Fr-1 and PBR11Fr-2. Liquid chromatography-tandem mass spectrometry analysis of both the fractions demonstrated the presence of significant antimicrobial compounds, including ethambutol. This is the first report on the detection of antituberculosis drug in the bioactive fractions of Streptomyces sp. PBR11. EtAc-PBR11 and PBR11Fr-1 showed the lowest MIC values (>0.097 and >0.048 µg/mL, respectively) against Candida albicans MTCC 227, whereas they showed the highest MIC values (>0.390 and >0.195 µg/mL, respectively) against Escherichia coli ATCC BAA-2469. The effects of PBR11Fr-1 were investigated on the pathogens by using a scanning electron microscope. The results indicated major morphological alterations in the cytoplasmic membrane. PBR11Fr-1 exhibited low cytotoxicity on normal hepatocyte cell line (CC-1) and the percent cell viability started to decline as the concentration increased from 50 µg/mL (87.07% ± 3.22%) to 100 µg/mL (81.26% ± 2.99%). IMPORTANCE Novel antibiotic breakthroughs are urgently required to combat antimicrobial resistance. Actinomycetia are the principal producers of antibiotics. The present study demonstrated the broad-spectrum antimicrobial potential of an Actinomycetia strain Streptomyces sp. strain PBR11 isolated from the PWS of Assam, India, which represents diverse, poorly screened habitats for novel microorganisms. The strain displayed 92.4% sequence similarity with genes of the closest type strain, indicating that the strain may represent a novel taxon within the phylum Actinomycetota. The metabolomics studies of EtAc-PBR11 revealed structurally diverse antimicrobial agents, including the detection of the antituberculosis drug ethambutol, in the bioactive fraction of Streptomyces sp. PBR11 for the first time. The PBR11 strain also yielded positive results for the antibiotic synthesis gene and the chitinase gene, both of which are responsible for broad-spectrum antimicrobial activity. This suggests that the untouched forest ecosystems have a tremendous potential to harbor potent actinomycetia for future drug discovery.

4.
Front Plant Sci ; 13: 1058867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570961

RESUMEN

Endophytic actinobacteria aid in plant development and disease resistance by boosting nutrient uptake or producing secondary metabolites. For the first time, we investigated the culturable endophytic actinobacteria associated with ten epiphytic orchid species of Assam, India. 51 morphologically distinct actinobacteria were recovered from surface sterilized roots and leaves of orchids and characterized based on different PGP and antifungal traits. According to the 16S rRNA gene sequence, these isolates were divided into six families and eight genera, where Streptomyces was most abundant (n=29, 56.86%), followed by Actinomadura, Nocardia, Nocardiopsis, Nocardioides, Pseudonocardia, Microbacterium, and Mycolicibacterium. Regarding PGP characteristics, 25 (49.01%) isolates demonstrated phosphate solubilization in the range of 61.1±4.4 - 289.7±11.9 µg/ml, whereas 27 (52.94%) isolates biosynthesized IAA in the range of 4.0 ± 0.08 - 43.8 ± 0.2 µg/ml, and 35 (68.62%) isolates generated ammonia in the range of 0.9 ± 0.1 - 5.9 ± 0.2 µmol/ml. These isolates also produced extracellular enzymes, viz. protease (43.13%), cellulase (23.52%), pectinase (21.56%), ACC deaminase (27.45%), and chitinase (37.25%). Out of 51 isolates, 27 (52.94%) showed antagonism against at least one test phytopathogen. In molecular screening, most isolates with antifungal and chitinase producing traits revealed the presence of 18 family chitinase genes. Two actinobacterial endophytes, Streptomyces sp. VCLA3 and Streptomyces sp. RVRA7 were ranked as the best strains based on PGP and antifungal activity on bonitur scale. GC-MS examination of ethyl acetate extract of these potent strains displayed antimicrobial compound phenol, 2,4-bis-(1,1-dimethylethyl) as the major metabolite along with other antifungal and plant growth beneficial bioactive chemicals. SEM analysis of fungal pathogen F. oxysporum (MTCC 4633) affected by Streptomyces sp. VCLA3 revealed significant destruction in the spore structure. An in vivo plant growth promotion experiment with VCLA3 and RVRA7 on chili plants exhibited statistically significant (p<0.05) improvements in all of the evaluated vegetative parameters compared to the control. Our research thus gives insight into the diversity, composition, and functional significance of endophytic actinobacteria associated with orchids. This research demonstrates that isolates with multiple plant development and broad-spectrum antifungal properties are beneficial for plant growth. They may provide a viable alternative to chemical fertilizers and pesticides and a sustainable solution for chemical inputs in agriculture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA