Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 39(11): 287, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37632593

RESUMEN

The fungi-based technology provided encouraging scenarios in the transition from a conventionally based economic system to the potential security of sources closely associated with the agricultural sphere such as the agriculture. In recent years, the intensification of fungi-based processes has generated significant gains, additionally to the production of materials with significant benefits and strong environmental importance. Furthermore, the growing concern for human health, especially in the agriculture scenario, has fostered the investigation of organisms with high biological and beneficial potential for use in agricultural systems. Accordingly, this study offered a comprehensive review of the diversity of the soil fungal microbiome and its main applications in a biotechnological approach aimed at agriculture and food chain-related areas. Moreover, the spectrum of opportunities and the extensive optimization platform for obtaining fungi compounds and metabolites are discussed. Finally, future perspectives regarding the insurgency of innovations and challenges on the broad rise of visionary solutions applied to the biotechnology context are provided.


Asunto(s)
Micobioma , Suelo , Humanos , Agricultura , Biotecnología , Cadena Alimentaria
2.
Bioprocess Biosyst Eng ; 44(4): 769-783, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33389169

RESUMEN

Ultrasound-assisted extraction (UAE) and pressurized hot water extraction (PHWE) were tested as advanced clean methods to obtain polysaccharides from Phoma dimorpha mycelial biomass. These methods were compared to conventional extraction (hot water extraction, HWE) in terms of polysaccharides-enriched fractions (PEF) yield. A central composite rotational design was performed for each extraction method to investigate the influence of independent variables on the yield and to help the selection of the condition with the highest yield using water as an extraction solvent. The best extraction condition of PEF yielded 12.02 wt% and was achieved when using UAE with direct sonication for 30 min under the intensity of 75.11 W/cm2 and pulse factor of 0.57. In the kinetic profiles, the highest yield (15.28 wt%) was obtained at 50 °C under an ultrasound intensity of 75.11 W/cm2 and a pulse factor of 0.93. Structural analysis of extracted polysaccharide was performed using Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal property. The water solubility index, water holding capacity, and emulsification index of PEF were 31.3 ± 1.5%, 138.1 ± 3.2%, and 62.9 ± 2.3%, respectively. The submerged fermentation demonstrates the huge potential of Phoma dimorpha to produce polysaccharides with bioemulsifying properties as a biotechnologically cleaner alternative if compared to commercial petroleum-derived compounds. Furthermore, UAE and PHWE are green technologies, which can be operated at an industrial scale for PEF extraction.


Asunto(s)
Ascomicetos/metabolismo , Biomasa , Microbiología Industrial/métodos , Micelio/química , Polisacáridos/química , Agua/química , Biotecnología , Fermentación , Tecnología Química Verde , Cinética , Microscopía Electrónica de Rastreo , Petróleo , Solubilidad , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termogravimetría , Ultrasonido , Difracción de Rayos X
3.
J Food Sci Technol ; 58(7): 2487-2496, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34194085

RESUMEN

The residue from chicken mechanically separated meat (MSM) is a potential source for the extraction of collagen. However, this process requires the removal of many covalent crosslinks, which makes it quite complex. Ultrasound has been successfully used to extract collagen; it reduces the process time and increases the yield. However, information regarding the effects of this treatment on the structural and functional properties of proteins is still very limited. Therefore, the aims of the present study were to obtain collagen from chicken MSM residue and to test the effects of pre-treatment with ultrasonic probe and enzymatic extraction with pepsin in its yield, as well as to evaluate the properties of extracted collagen using gel electrophoresis, Fourier-transform infrared spectroscopy, solubility, and differential scanning calorimetry. Both the ultrasound and the enzymatic extraction had a positive effect on the extraction yield of collagen from chicken MSM residue without affecting its integrity. Using ultrasound led to an increase of up to 40% in yield when compared to treatments without ultrasound application. Five extraction treatments were considered. The extracted collagen exhibited high thermal stability (43.9-47.0 °C) and mainly type I structure. The use of ultrasound as pre-treatment, together with enzymatic extraction with pepsin, were effective in increasing the extraction yield of collagen from chicken MSM residue, as well as preserving the triple helical structure of the native collagen.

4.
Crit Rev Biotechnol ; 40(8): 1059-1080, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32787550

RESUMEN

Fungal biopolymers have gained considerable attention from the scientific community for various applications due to their biological and physicochemical properties. The wide applications in several areas, especially in the food industry as a bioemulsifier and in the agricultural area as a biosurfactant, have expanded the knowledge on the production of fungal biopolymers to keep up with developments on this subject area. Recent scientific studies have disclosed novel routes, optimized parameters, increased yields, and other related approaches in order to produce and apply fungal bioemulsifiers and biosurfactants. However, there is a need to gather important information in order to provide a way forward. Therefore, this review presents an overview of properties, applications, and perspectives for encouraging further projects and investments in the near future by most categories of investors. The selection of culture media, the definition of cultivation parameters, extraction, recovery, and purification are the initial steps to indicate the conditions for scale-up. Indeed, scale-up is still one of the challenges in this biotechnological field, which could be solved by expanding the tests and operational productions in both pilot and industrial plants.


Asunto(s)
Biopolímeros/química , Biopolímeros/metabolismo , Emulsionantes/química , Hongos/metabolismo , Biotecnología , Medios de Cultivo , Emulsionantes/metabolismo , Fermentación , Glucanos , Polisacáridos/química , Polisacáridos/metabolismo , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/metabolismo , Tensoactivos/química
5.
Appl Microbiol Biotechnol ; 103(18): 7805-7817, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31414164

RESUMEN

The application of lipases in liquid formulation instead of immobilized forms in the enzymatic biodiesel synthesis can make the process cost-efficient, more competitive, and sustainable. However, despite the benefits, the long reaction times required to achieve satisfactory yields is still a drawback of this biotechnological process. In this sense, employing the novel low-cost soluble NS40116 lipase, this paper proposes an innovative two-step hydroesterification reaction (TSHR) system as a technique of improving the reaction rate of an enzymatic biodiesel production. With the employment of two central composite statistical design to optimize the parameters of each of the reactions involved, the influence of the parameters "water concentration added to the reaction," "methanol-to-oil molar ratio," and "lipase load" on the process yield, besides the acid value of the samples, was investigated. After only 8 h of reaction, the highest fatty acid methyl ester yield reached was 97.1% with an acid value of 4.62 mg KOH g-1 utilizing a total of 8 wt% water, methanol-to-oil molar ratio of 6.3:1, and 0.70 wt% of lipase. Furthermore, the statistical models for both reactions indicated to be significant with 95% of reliability. Considering that the papers published using soluble lipases in a one-step batch process normally reach similar yields to those obtained in this research after 16 h to 24 h of reaction, the proposed system demonstrated to be a promising option of process configuration for the enzymatic production of biodiesel.


Asunto(s)
Biocombustibles , Lipasa/metabolismo , Metanol/metabolismo , Aceites de Plantas/metabolismo , Biotecnología , Catálisis , Esterificación , Ácidos Grasos/metabolismo , Reproducibilidad de los Resultados
6.
Bioprocess Biosyst Eng ; 42(5): 829-838, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30739160

RESUMEN

In the present study, it was presented a strategy to maximize the cutinase production by solid-state fermentation from different microorganisms and substrates. The best results were observed using Fusarium verticillioides, rice bran being the main substrate. Maximum yield of cutinase obtained by the strain was 16.22 U/g. For concentration, ethanol precipitation was used, and the purification factor was 2.4. The optimum temperature and pH for enzyme activity were 35 °C and 6.5, respectively. The enzyme was stable at a wide range of temperature and at all pH values tested. The concentrated cutinase was used as an adjuvant in a formulation containing cutinase + bioherbicide. The use of enzyme increased the efficiency of bioherbicide, since cutinase was responsible to remove/degrade the cutin that recovery the weed leaves and difficult the bioherbicide absorption. Cutinase showed to be a promising product to be used in formulation of bioherbicides.


Asunto(s)
Hidrolasas de Éster Carboxílico , Proteínas Fúngicas , Fusarium/enzimología , Herbicidas/metabolismo , Control Biológico de Vectores , Hidrolasas de Éster Carboxílico/biosíntesis , Hidrolasas de Éster Carboxílico/química , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Herbicidas/química , Concentración de Iones de Hidrógeno , Oryza/química
7.
Bioprocess Biosyst Eng ; 42(5): 677-685, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30661103

RESUMEN

This study evaluated the production of cellulolytic enzymes from different agricultural residues. The crude enzyme extract produced was characterized and applied for saccharification of some agricultural residues. Maximum cellulolytic activities were obtained using soybean hulls. All enzymatic activities were highly stable at 40 °C at a pH range of 4.5-5.5. For stability at low temperatures, the enzyme extract was stored at freezing temperature and cooling for about 290 days without major loss of activity. The Km values found for total cellulase (FPase), endoglucanase (CMCase), and xylanase were 19.73 mg ml-1, 0.65 mg ml-1, and 22.64 mg ml-1, respectively, and Vmax values were 0.82 mol min-1 mg-1, 0.62 mol min-1 mg-1, and 104.17 mol min-1 mg-1 to cellulose, carboxymethyl cellulose, and xylan, respectively. In the saccharification tests, the total amount of total reducing sugars (TRS) released from 1 g of soybean hulls catalyzed by the enzymes present in the crude enzyme extract was 0.16 g g-1 dry substrate.


Asunto(s)
Biocombustibles , Celulasa , Proteínas Fúngicas , Glycine max/química , Trichoderma/enzimología , Celulasa/química , Celulasa/aislamiento & purificación , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Calor , Concentración de Iones de Hidrógeno
8.
Bioprocess Biosyst Eng ; 41(8): 1185-1193, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29700658

RESUMEN

This work investigates the use of blends of edible and nonedible raw materials as an alternative feedstock to fatty acid methyl esters (FAME) production through enzymatic catalysis. As biocatalyst, liquid lipase from Thermomyces lanuginosus (Callera™ Trans L), was used. Under reaction conditions of 35 °C, methanol to feedstock molar ratio of 4.5:1 and 1.45% of catalyst load, the best process performance was reached using 9% of water concentration in the medium-yield of 79.9% after 480 min of reaction. In terms of use of tallow mixed with soybean oil, the best yield was obtained when 100% of tallow was used in the process-84.6% after 480 min of reaction-behavior that was associated with the degree of unsaturation of the feedstock, something by that time, not addressed in papers of the area. The results show that tallow can be used as an alternative to FAME production, catalyzed by soluble lipase.


Asunto(s)
Ascomicetos/enzimología , Ácidos Grasos/química , Proteínas Fúngicas/química , Lipasa/química , Alimentación Animal
9.
Bioprocess Biosyst Eng ; 37(10): 1945-54, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24658796

RESUMEN

Aiming to scale up and apply control and optimization strategies, currently is required the development of accurate plant models to forecast the process nonlinear dynamics. In this work, a mathematical model to predict the growth of the Kluyveromyces marxianus and temperature profile in a fixed-bed bioreactor for solid-state fermentation using sugarcane bagasse as substrate was built up. A parameter estimation technique was performed to fit the mathematical model to the experimental data. The estimated parameters and the model fitness were evaluated with statistical analyses. The results have shown the estimated parameters significance, with 95 % confidence intervals, and the good quality of process model to reproduce the experimental data.


Asunto(s)
Reactores Biológicos , Kluyveromyces/crecimiento & desarrollo , Modelos Biológicos , Temperatura , Fermentación
10.
Molecules ; 19(9): 14615-24, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25225722

RESUMEN

The commercial inulinase obtained from Aspergillus niger was non-covalently immobilized on multiwalled carbon nanotubes (MWNT-COOH). The immobilization conditions for the carbon nanotubes were defined by the central composite rotational design (CCRD). The effects of enzyme concentration (0.8%-1.7% v/v) and adsorbent:adsorbate ratio (1:460-1:175) on the enzyme immobilization were studied. The adsorbent:adsorbate ratio variable has positive effect and the enzyme concentration has a negative effect on the inulinase immobilization (U/g) response at the 90% significance level. These results show that the lower the enzyme concentration and the higher the adsorbent:adsorbate ratio, better is the immobilization. According to the results, it is possible to observe that the carbon nanotubes present an effective inulinase adsorption. Fast adsorption in about six minutes and a loading capacity of 51,047 U/g support using a 1.3% (v/v) inulinase concentration and a 1:460 adsorbent:adsorbate ratio was observed. The effects of temperature on the immobilized enzyme activity were evaluated, showing better activity at 50 °C. The immobilized enzyme maintained 100% of its activity during five weeks at room temperature. The immobilization strategy with MWNT-COOH was defined by the experimental design, showing that inulinase immobilization is a promising biotechnological application of carbon nanotubes.


Asunto(s)
Aspergillus niger/enzimología , Enzimas Inmovilizadas/química , Glicósido Hidrolasas/química , Nanotubos de Carbono/química , Adsorción , Biotecnología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA