RESUMEN
To investigate noxious stimulation-responsive neural circuits that could influence the gut, we recorded from intestinally directed (efferent) nerve filaments dissected from mesenteric nerves close to the small intestine in anesthetized rats. These exhibited baseline multiunit activity that was almost unaffected by vagotomy (VagX) and reduced only slightly by cutting the splanchnic nerves. The activity was halved by hexamethonium (Hex) treatment. When an adjacent gut segment received an intraluminal stimulus 2,4,6-trinitrobenzenesulfonate (TNBS) in 30% ethanol, mesenteric efferent nerve activity increased for more than 1 h. The increased activity was almost unaffected by bilateral vagotomy or splanchnic nerve section, indicating a lack of central nervous involvement, but it was 60% reduced by hexamethonium. Spike sorting discriminated efferent single and predominantly single-unit spike trains that responded to TNBS, were unaffected by splachnectomy but were silenced by hexamethonium. After noxious stimulation of one segment, the adjacent segment showed no evidence of suppression of gut motility or vasoconstriction. We conclude that luminal application of a noxious stimulus to the small intestine activates an entirely peripheral, intestinointestinal reflex pathway. This pathway involves enteric intestinofugal neurons that excite postganglionic sympathetic neurons via a nicotinic synapse. We suggest that the final sympathetic efferent neurons that respond to a tissue damaging stimulus are distinct from vasoconstrictor, secretomotor, and motility inhibiting neurons.NEW & NOTEWORTHY An intraluminal noxious chemical stimulus applied to one segment of small intestine increased mesenteric efferent nerve activity to an adjacent segment. This was identified as a peripheral ganglionic reflex that did not require vagal or spinal connections. Hexamethonium blocked most, but not all, ongoing and reflex mesenteric efferent activity. The prevertebral sympathetic efferent neurons that are activated likely affect inflammatory and immune functions of other gut segments.
Asunto(s)
Reflejo , Nervios Esplácnicos , Ratas , Animales , Hexametonio/farmacología , Reflejo/fisiología , Vagotomía , Nervio Vago/fisiología , Sistema Nervioso Simpático/fisiologíaRESUMEN
In this review, we will try to convince the readers that the immune system is controlled by an endogenous neural reflex, termed inflammatory reflex, that inhibits the acute immune response during the course of a systemic immune challenge. We will analyse here the contribution of different sympathetic nerves as possible efferent arms of the inflammatory reflex. We will discuss the evidence that demonstrates that neither the splenic sympathetic nerves nor the hepatic sympathetic nerves are necessary for the endogenous neural reflex inhibition of inflammation. We will discuss the contribution of the adrenal glands to the reflex control of inflammation, noting that the neurally mediated release of catecholamines in the systemic circulation is responsible for the enhancement of the anti-inflammatory cytokine interleukin 10 (IL-10) but not of the inhibition of the pro-inflammatory cytokine tumour necrosis factor α (TNF). We will conclude by reviewing the evidence that demonstrates that the splanchnic anti-inflammatory pathway, composed by preganglionic and postganglionic sympathetic splanchnic fibres with different target organs, including the spleen and the adrenal glands, is the efferent arm of the inflammatory reflex. During the course of a systemic immune challenge, the splanchnic anti-inflammatory pathway is endogenously activated to inhibit the TNF and enhance the IL-10 response, independently, presumably acting on separate populations of leukocytes.
Asunto(s)
Interleucina-10 , Nervios Esplácnicos , Humanos , Nervios Esplácnicos/metabolismo , Sistema Nervioso Simpático , Inflamación , Reflejo/fisiología , Citocinas , Antiinflamatorios/farmacologíaRESUMEN
The efferent branches of the splanchnic sympathetic nerves that enhance interleukin-10 (IL-10) and suppress tumour necrosis factor-α (TNF) levels in the reflex response to systemic immune challenge were investigated in anaesthetized, ventilated rats. Plasma levels of TNF and IL-10 were measured 90 min after intravenous lipopolysaccharide (LPS, 60 µg/kg). Splanchnic nerve section, ganglionic blockade with pentolinium tartrate or ß2 adrenoreceptor antagonism with ICI 118551 all blocked IL-10 responses. Restoring plasma adrenaline after splanchnic denervation rescued IL-10 responses. TNF responses were disinhibited by splanchnic denervation or pentolinium treatment, but not by ICI 118551. Splanchnic nerve branches were cut individually or in combination in vagotomized rats, ruling out any vagal influence on results. Distal splanchnic denervation, sparing the adrenal nerves, disinhibited TNF but did not reduce IL-10 responses. Selective adrenal denervation depressed IL-10 but did not disinhibit TNF responses. Selective denervation of either spleen or liver did not affect IL-10 or TNF responses, but combined splenic and adrenal denervation did so. Finally, combined section of the cervical and lumbar sympathetic nerves did not affect cytokine responses to LPS. Together, these results show that the endogenous anti-inflammatory reflex is mediated by sympathetic efferent fibres that run in the splanchnic, but not other sympathetic nerves, nor the vagus. Within the splanchnic nerves, divergent pathways control these two cytokine responses: neurally driven adrenaline, acting via ß2 adrenoreceptors, regulates IL-10, while TNF is restrained by sympathetic nerves to abdominal organs including the spleen, where non-ß2 adrenoreceptor mechanisms are dominant. KEY POINTS: An endogenous neural reflex, mediated by the splanchnic, but not other sympathetic nerves, moderates the cytokine response to systemic inflammatory challenge. This reflex suppresses the pro-inflammatory cytokine tumour necrosis factor-α (TNF), while enhancing levels of the anti-inflammatory cytokine interleukin-10 (IL-10). The reflex enhancement of IL-10 depends on the splanchnic nerve supply to the adrenal gland and on ß2 adrenoreceptors, consistent with mediation by circulating adrenaline. After splanchnic nerve section it can be rescued by restoring circulating adrenaline. The reflex suppression of TNF depends on splanchnic nerve branches that innervate abdominal tissues including, but not restricted to, spleen: it is not blocked by adrenal denervation or ß2 adrenoreceptor antagonism. Distinct sympathetic efferent pathways are thus responsible for pro- and anti-inflammatory cytokine components of the reflex regulating inflammation.
Asunto(s)
Endotoxemia , Interleucina-10 , Factor de Necrosis Tumoral alfa , Animales , Citocinas , Epinefrina/sangre , Interleucina-10/metabolismo , Lipopolisacáridos/farmacología , Tartrato de Pentolinio/farmacología , Propanolaminas , Ratas , Reflejo/fisiología , Nervios Esplácnicos/fisiología , Sistema Nervioso Simpático/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Nervio Vago/fisiologíaRESUMEN
Twenty-five years ago, a new physiological preparation called the working heart-brainstem preparation (WHBP) was introduced with the claim it would provide a new platform allowing studies not possible before in cardiovascular, neuroendocrine, autonomic and respiratory research. Herein, we review some of the progress made with the WHBP, some advantages and disadvantages along with potential future applications, and provide photographs and technical drawings of all the customised equipment used for the preparation. Using mice or rats, the WHBP is an in situ experimental model that is perfused via an extracorporeal circuit benefitting from unprecedented surgical access, mechanical stability of the brain for whole cell recording and an uncompromised use of pharmacological agents akin to in vitro approaches. The preparation has revealed novel mechanistic insights into, for example, the generation of distinct respiratory rhythms, the neurogenesis of sympathetic activity, coupling between respiration and the heart and circulation, hypothalamic and spinal control mechanisms, and peripheral and central chemoreceptor mechanisms. Insights have been gleaned into diseases such as hypertension, heart failure and sleep apnoea. Findings from the in situ preparation have been ratified in conscious in vivo animals and when tested have translated to humans. We conclude by discussing potential future applications of the WHBP including two-photon imaging of peripheral and central nervous systems and adoption of pharmacogenetic tools that will improve our understanding of physiological mechanisms and reveal novel mechanisms that may guide new treatment strategies for cardiorespiratory diseases.
Asunto(s)
Tronco Encefálico , Corazón , Animales , Tronco Encefálico/fisiología , Fenómenos Fisiológicos Cardiovasculares , Corazón/fisiología , Pulmón , Ratones , Ratas , RespiraciónRESUMEN
The splanchnic anti-inflammatory pathway, the efferent arm of the endogenous inflammatory reflex, has been shown to suppress the acute inflammatory response of rats to systemic lipopolysaccharide (LPS). Here we show for the first time that this applies also to mice, and that the reflex may be engaged by a range of inflammatory stimuli. Experiments were performed on mice under deep anaesthesia. Half the animals were subjected to bilateral section of the splanchnic sympathetic nerves, to disconnect the splanchnic anti-inflammatory pathway, while the remainder underwent a sham operation. Mice were then challenged intravenously with one of three inflammatory stimuli: the toll-like receptor (TLR)-4 agonist, LPS (60 µg/kg), the TLR-3 agonist Polyinosinic:polycytidylic acid (Poly I:C, 1 mg/kg) or the TLR-2 and -6 agonist dipalmitoyl-S-glyceryl cysteine (Pam2cys, 34 µg/kg). Ninety minutes later, blood was sampled by cardiac puncture for serum cytokine analysis. The splanchnic anti-inflammatory reflex action was assessed by comparing cytokine levels between animals with cut versus those with intact splanchnic nerves. A consistent pattern emerged: Tumor necrosis factor (TNF) levels in response to all three challenges were raised by prior splanchnic nerve section, while levels of the anti-inflammatory cytokine interleukin 10 (IL-10) were reduced. The raised TNF:IL-10 ratio after splanchnic nerve section indicates an enhanced inflammatory state when the reflex is disabled. These findings show for the first time that the inflammatory reflex drives a coordinated anti-inflammatory action also in mice, and demonstrate that its anti-inflammatory action is engaged, in similar fashion, by inflammatory stimuli mimicking a range of bacterial and viral infections.
Asunto(s)
Lipopolisacáridos , Nervios Esplácnicos , Animales , Citocinas , Ratones , Ratas , Reflejo , Factor de Necrosis Tumoral alfaRESUMEN
KEY POINTS: Spinally-projecting neurons of the rostral ventrolateral medulla (RVLM) determine sympathetic outflow to different territories of the body. Previous studies suggest the existence of RVLM neurons with distinct functional classes, such as neurons that target sympathetic nerves bound for functionally-similar tissue types (e.g. muscle vasculature). The existence of RVLM neurons with more general actions had not been critically tested. Using viral tracing, we show that a significant minority of RVLM neurons send axon collaterals to disparate spinal segments (T2 and T10 ). Furthermore, optogenetic activation of sympathetic premotor neurons projecting to lumbar spinal segments also produced activation of sympathetic nerves from rostral spinal segments that innervate functionally diverse tissues (heart and forelimb muscle). These findings suggest the existence of individual RVLM neurons for which the axons branch to drive sympathetic preganglionic neurons of more than one functional class and may be able to produce global changes in sympathetic activity. ABSTRACT: We investigate the extent of spinal axon collateralization of rat rostral ventrolateral medulla (RVLM) sympathetic premotor neurons and its functional consequences. In anatomical tracing experiments, two recombinant herpes viral vectors with retrograde tropism and expressing different fluorophores were injected into the intermediolateral column at upper thoracic and lower thoracic levels. Histological analysis revealed that â¼21% of RVLM bulbospinal neurons were retrogradely labelled by both vectors, indicating substantial axonal collateralization to disparate spinal segments. In functional experiments, another virus with retrograde tropism, a canine adenovirus expressing Cre recombinase, was injected into the left intermediolateral horn around the thoracolumbar junction, whereas a Cre-dependent viral vector encoding Channelrhodopsin2 under LoxP control was injected into the ipsilateral RVLM. In subsequent terminal experiments, blue laser light (473 nm × 20 ms pulses at 10 mW) was used to activate RVLM neurons that had been transduced by both vectors. Stimulus-locked activation, at appropriate latencies, was recorded in the following pairs of sympathetic nerves: forelimb and hindlimb muscle sympathetic fibres, as well as cardiac and either hindlimb muscle or lumbar sympathetic nerves. The latter result demonstrates that axon collaterals of lumbar-projecting RVLM neurons project to, and excite, both functionally similar (forelimb and hindlimb muscle) and functionally dissimilar (lumbar and cardiac) preganglionic neurons. Taken together, these findings show that the axons of a significant proportion of RVLM neurons collateralise widely within the spinal cord, and that they may excite preganglionic neurons of more than one functional class.
Asunto(s)
Axones/fisiología , Neuronas/fisiología , Médula Espinal/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Fibras Autónomas Preganglionares/fisiología , Miembro Posterior/fisiología , Interneuronas/fisiología , Masculino , Bulbo Raquídeo/fisiología , Músculos/fisiología , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-DawleyRESUMEN
Mammals are characterized by a stable core body temperature. When maintenance of core temperature is challenged by ambient or internal heat loads, mammals increase blood flow to the skin, sweat and/or pant, or salivate. These thermoregulatory responses enable evaporative cooling at moist surfaces to dissipate body heat. If water losses incurred during evaporative cooling are not replaced, body fluid homeostasis is challenged. This article reviews the way mammals balance thermoregulation and osmoregulation.
Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Homeostasis/fisiología , Osmorregulación/fisiología , Animales , Temperatura Corporal/fisiología , Humanos , Equilibrio Hidroelectrolítico/fisiologíaRESUMEN
The splanchnic anti-inflammatory pathway has been proposed as the efferent arm of the inflammatory reflex. Although much evidence points to the spleen as the principal target organ where sympathetic nerves inhibit immune function, a systematic study to locate the target organ(s) of the splanchnic anti-inflammatory pathway has not yet been made. In anesthetized rats made endotoxemic with lipopolysaccharide (LPS, 60 µg/kg iv), plasma levels of tumor necrosis factor-α (TNF-α) were measured in animals with cut (SplancX) or sham-cut (Sham) splanchnic nerves. We confirm here that disengagement of the splanchnic anti-inflammatory pathway in SplancX rats (17.01 ± 0.95 ng/ml, mean ± SE) strongly enhances LPS-induced plasma TNF-α levels compared with Sham rats (3.76 ± 0.95 ng/ml). In paired experiments, the responses of SplancX and Sham animals were compared after the single or combined removal of organs innervated by the splanchnic nerves. Removal of target organ(s) where the splanchnic nerves inhibit systemic inflammation should abolish any difference in LPS-induced plasma TNF-α levels between Sham and SplancX rats. Any secondary effects of extirpating organs should apply to both groups. Surprisingly, removal of the spleen and/or the adrenal glands did not prevent the reflex splanchnic anti-inflammatory action nor did the following removals: spleen + adrenals + intestine; spleen + intestine + stomach and pancreas; or spleen + intestine + stomach and pancreas + liver. Only when spleen, adrenals, intestine, stomach, pancreas, and liver were all removed did the difference between SplancX and Sham animals disappear. We conclude that the reflex anti-inflammatory action of the splanchnic nerves is distributed widely across abdominal organs.
Asunto(s)
Abdomen/fisiopatología , Inflamación/fisiopatología , Nervios Esplácnicos/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Glándulas Suprarrenales/fisiopatología , Animales , Presión Arterial , Catecolaminas/metabolismo , Inflamación/inducido químicamente , Lipopolisacáridos , Masculino , Ratas , Ratas Sprague-Dawley , Reflejo , Bazo/fisiopatología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Electrical stimulation of the vagus nerve (VNS) is a novel strategy used to treat inflammatory conditions. Therapeutic VNS activates both efferent and afferent fibers; however, the effects attributable to vagal afferent stimulation are unclear. Here, we tested if selective activation of afferent fibers in the abdominal vagus suppresses systemic inflammation. In urethane-anesthetized rats challenged with lipopolysaccharide (LPS, 60⯵g/kg, i.v.), abdominal afferent VNS (2 Hz for 20â¯min) reduced plasma tumor necrosis factor alpha (TNF) levels 90â¯min later by 88% compared with unmanipulated animals. Pre-cutting the cervical vagi blocked this anti-inflammatory action. Interestingly, the surgical procedure to expose and prepare the abdominal vagus for afferent stimulation ('vagal manipulation') also had an anti-inflammatory action. Levels of the anti-inflammatory cytokine IL-10 were inversely related to those of TNF. Prior bilateral section of the splanchnic sympathetic nerves reversed the anti-inflammatory actions of afferent VNS and vagal manipulation. Sympathetic efferent activity in the splanchnic nerve was shown to respond reflexly to abdominal vagal afferent stimulation. These data demonstrate that experimentally activating abdominal vagal afferent fibers suppresses systemic inflammation, and that the efferent neural pathway for this action is in the splanchnic sympathetic nerves.
Asunto(s)
Inflamación/metabolismo , Nervios Esplácnicos/fisiología , Nervio Vago/fisiología , Abdomen/inervación , Vías Aferentes/metabolismo , Vías Aferentes/fisiología , Animales , Antiinflamatorios/farmacología , Citocinas , Modelos Animales de Enfermedad , Inflamación/inmunología , Interleucina-10/análisis , Interleucina-10/sangre , Lipopolisacáridos/farmacología , Masculino , Vías Nerviosas , Ratas , Ratas Sprague-Dawley , Nervios Esplácnicos/inmunología , Sistema Nervioso Simpático , Factor de Necrosis Tumoral alfa/análisis , Factor de Necrosis Tumoral alfa/sangre , Nervio Vago/inmunología , Estimulación del Nervio Vago/métodosRESUMEN
KEY POINTS: Cardiac vagal tone is a strong predictor of health, although its central origins are unknown. Respiratory-linked fluctuations in cardiac vagal tone give rise to respiratory sinus arryhthmia (RSA), with maximum tone in the post-inspiratory phase of respiration. In the present study, we investigated whether respiratory modulation of cardiac vagal tone is intrinsically linked to post-inspiratory respiratory control using the unanaesthetized working heart-brainstem preparation of the rat. Abolition of post-inspiration, achieved by inhibition of the pontine Kolliker-Fuse nucleus, removed post-inspiratory peaks in efferent cardiac vagal activity and suppressed RSA, whereas substantial cardiac vagal tone persisted. After transection of the caudal pons, part of the remaining tone was removed by inhibition of nucleus of the solitary tract. We conclude that cardiac vagal tone depends upon at least 3 sites of the pontomedullary brainstem and that a significant proportion arises independently of RSA. ABSTRACT: Cardiac vagal tone is a strong predictor of health, although its central origins are unknown. The rat working heart-brainstem preparation shows strong cardiac vagal tone and pronounced respiratory sinus arrhythmia. In this preparation, recordings from the cut left cardiac vagal branch showed efferent activity that peaked in post-inspiration, â¼0.5 s before the cyclic minimum in heart rate (HR). We hypothesized that respiratory modulation of cardiac vagal tone and HR is intrinsically linked to the generation of post-inspiration. Neurons in the pontine Kölliker-Fuse nucleus (KF) were inhibited with bilateral microinjections of isoguvacine (50-70 nl, 10 mm) to remove the post-inspiratory phase of respiration. This also abolished the post-inspiratory peak of cardiac vagal discharge (and cyclical HR modulation), although a substantial level of activity remained. In separate preparations with intact cardiac vagal branches but sympathetically denervated by thoracic spinal pithing, cardiac chronotropic vagal tone was quantified by HR compared to its final level after systemic atropine (0.5 µm). Bilateral KF inhibition removed 88% of the cyclical fluctuation in HR but, on average, only 52% of the chronotropic vagal tone. Substantial chronotropic vagal tone also remained after transection of the brainstem through the caudal pons. Subsequent bilateral isoguvacine injections into the nucleus of the solitary tract further reduced vagal tone: remaining sources were untraced. We conclude that cardiac vagal tone depends on neurons in at least three sites of the pontomedullary brainstem, and much of it arises independently of respiratory sinus arrhythmia.
Asunto(s)
Tronco Encefálico/fisiología , Corazón/fisiología , Arritmia Sinusal Respiratoria/fisiología , Nervio Vago/fisiología , Animales , Femenino , Masculino , Neuronas/fisiología , Ratas Sprague-DawleyRESUMEN
Sweating events occur in response to mental stress (psychogenic) or with increased body temperature (thermogenic). We previously found that both were linked to activation of common brain stem regions, suggesting that they share the same output pathways: a putative common premotor nucleus was identified in the rostral-lateral medulla (Farrell MJ, Trevaks D, Taylor NA, McAllen RM. Am J Physiol Regul Integr Comp Physiol 304: R810-R817, 2013). We therefore looked in higher brain regions for the neural basis that differentiates the two types of sweating event. Previous work has identified hemispheric activations linked to psychogenic sweating, but no corresponding data have been reported for thermogenic sweating. Galvanic skin responses were used to measure sweating events in two groups of subjects during either psychogenic sweating (n = 11, 35.3 ± 11.8 yr) or thermogenic sweating (n = 11, 34.4 ± 10.2 yr) while regional brain activation was measured by BOLD signals in a 3-Tesla MRI scanner. Common regions activated with sweating events in both groups included the anterior and posterior cingulate cortex, insula, premotor cortex, thalamus, lentiform nuclei, and cerebellum (P(corrected) < 0.05). Psychogenic sweating events were associated with significantly greater activation in the dorsal midcingulate cortex, parietal cortex, premotor cortex, occipital cortex, and cerebellum. No hemispheric region was found to show statistically significantly greater activation with thermogenic than with psychogenic sweating events. However, a discrete cluster of activation in the anterior hypothalamus/preoptic area was seen only with thermogenic sweating events. These findings suggest that the expected association between sweating events and brain regions implicated in "arousal" may apply selectively to psychogenic sweating; the neural basis for thermogenic sweating events may be subcortical.
Asunto(s)
Temperatura Corporal , Encéfalo/fisiología , Estrés Psicológico/fisiopatología , Sudoración , Adulto , Mapeo Encefálico , Femenino , Respuesta Galvánica de la Piel , Calor , Humanos , Imagen por Resonancia Magnética , Masculino , Temperatura Cutánea , Test de StroopRESUMEN
The lack of noninvasive approaches to measure cardiac sympathetic nerve activity (CSNA) has driven the development of indirect estimates such as the low-frequency (LF) power of heart rate variability (HRV). Recently, it has been suggested that LF HRV can be used to estimate the baroreflex modulation of heart period (HP) rather than cardiac sympathetic tone. To test this hypothesis, we measured CSNA, HP, blood pressure (BP), and baroreflex sensitivity (BRS) of HP, estimated with the modified Oxford technique, in conscious sheep with pacing-induced heart failure and in healthy control sheep. We found that CSNA was higher and systolic BP and HP were lower in sheep with heart failure than in control sheep. Cross-correlation analysis showed that in each group, the beat-to-beat changes in HP correlated with those in CSNA and in BP, but LF HRV did not correlate significantly with either CSNA or BRS. However, when control sheep and sheep with heart failure were considered together, CSNA correlated negatively with HP and BRS. There was also a negative correlation between CSNA and BRS in control sheep when considered alone. In conclusion, we demonstrate that in conscious sheep, LF HRV is neither a robust index of CSNA nor of BRS and is outperformed by HP and BRS in tracking CSNA. These results do not support the use of LF HRV as a noninvasive estimate of either CSNA or baroreflex function, but they highlight a link between CSNA and BRS.
Asunto(s)
Barorreflejo , Frecuencia Cardíaca , Corazón/fisiología , Sistema Nervioso Simpático/fisiología , Análisis de Varianza , Animales , Femenino , Corazón/inervación , OvinosRESUMEN
Following an immune challenge, there is two-way communication between the nervous and immune systems. It is proposed that a neural reflex--the inflammatory reflex--regulates the plasma levels of the key proinflammatory cytokine TNF-α, and that its efferent pathway is in the splanchnic sympathetic nerves. The evidence for this reflex is based on experiments on anesthetized animals, but anesthesia itself suppresses inflammation, confounding interpretation. Here, we show that previous section of the splanchnic nerves strongly enhances the levels of plasma TNF-α in conscious rats 90 min after they received intravenous LPS (60 µg/kg). The same reflex mechanism, therefore, applies in conscious as in anesthetized animals. In anesthetized rats, we then determined the longer-term effects of splanchnic nerve section on responses to LPS (60 µg/kg iv). We confirmed that prior splanchnic nerve section enhanced the early (90 min) peak in plasma TNF-α and found that it reduced the 90-min peak of the anti-inflammatory cytokine IL-10; both subsequently fell to low levels in all animals. Splanchnic nerve section also enhanced the delayed rise in two key proinflammatory cytokines IL-6 and interferon γ. That enhancement was undiminished after 6 h, when other measured cytokines had subsided. Finally, LPS treatment caused hypotensive shock in rats with cut splanchnic nerves but not in sham-operated animals. These findings demonstrate that reflex activation of the splanchnic anti-inflammatory pathway has a powerful and sustained restraining influence on inflammatory processes.
Asunto(s)
Anestesia , Inflamación/metabolismo , Reflejo/fisiología , Transducción de Señal/fisiología , Nervios Esplácnicos/fisiología , Animales , Corticosterona/sangre , Corticosterona/genética , Corticosterona/metabolismo , Citocinas/sangre , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Lipopolisacáridos/toxicidad , Masculino , Ratas , Ratas Sprague-DawleyRESUMEN
Some recent publications have used the term "vagal-adrenal axis" to account for mechanisms involved in the regulation of inflammation by electroacupuncture. This concept proposes that efferent parasympathetic nerve fibers in the vagus directly innervate the adrenal glands to influence catecholamine secretion. Here, we discuss evidence for anatomical and functional links between the vagi and adrenal glands that may be relevant in the context of inflammation and its neural control by factors, including acupuncture. First, we find that evidence for any direct vagal parasympathetic efferent innervation of the adrenal glands is weak and likely artifactual. Second, we find good evidence that vagal afferent fibers directly innervate the adrenal gland, although their function is uncertain. Third, we highlight a wealth of evidence for indirect pathways, whereby vagal afferent signals act via the central nervous system to modify adrenal-dependent anti-inflammatory responses. Vagal afferents, not efferents, are thus the likely key to these phenomena.
Asunto(s)
Glándulas Suprarrenales , Nervio Vago , Nervio Vago/fisiología , Humanos , Animales , Glándulas Suprarrenales/fisiología , InflamaciónRESUMEN
Neurons that originate from pre-vertebral sympathetic ganglia, the splanchnic-celiac-superior mesenteric ganglion complex (SCSMG) in mouse, have important roles in control of organs of the upper abdomen. Here, we present a protocol for the isolation of the mouse sympathetic SCSMG. We describe steps for surgical incision, ganglia isolation, ganglia fine dissection, and whole-mount SCSMG after clearing-enhanced 3D (Ce3D) clearing method and immunohistochemistry. Given the importance of mice in studies of that control, this protocol aims to assist biomedical researchers in the dissection of the mouse SCSMG.
Asunto(s)
Ganglios Simpáticos , Nervios Esplácnicos , Animales , Ratones , Ganglios Simpáticos/citología , Ganglios Simpáticos/cirugía , Nervios Esplácnicos/cirugía , Inmunohistoquímica , Disección/métodos , Neuronas/citologíaRESUMEN
The brain stem premotor pathways controlling most noncardiovascular sympathetic outflows are unknown. Here, we mapped the brain stem neurons that drive sweating, by microinjecting excitant amino acid (L-glutamate or D,L-homocysteate: 0.4-3 nmol) into 420 sites over the pons and medulla of eight chloralose-anesthetized cats (70 mg/kg iv). Sweating was recorded by the electrodermal potential at the ipsilateral forepaw pad. Responses were classified as immediate (<5 s latency) or delayed (>10 s latency). Immediate responses were obtained from 16 sites (1-3 per animal) and were accompanied by no change in blood pressure. Those sites were clustered between the facial nucleus and the pyramidal tract in the rostral ventromedial medulla (RVMM). Microinjections into 33 surrounding sites caused delayed electrodermal responses of lesser amplitude, while the remaining 371 sites evoked none. To retrogradely label bulbospinal neurons that may mediate electrodermal responses, fluorescent latex microspheres were injected into the region of the intermediolateral cell column in the fourth thoracic segment in an earlier preparatory procedure on six of the animals. A cluster of retrogradely labeled neurons was identified between the facial nucleus and the pyramidal tract. Neurons in this discrete region of the RVMM, thus, drive sweating in the cat's paw and may do so via direct spinal projections.
Asunto(s)
Tronco Encefálico/citología , Neuronas/citología , Sudoración/fisiología , Animales , Presión Sanguínea/fisiología , Tronco Encefálico/fisiología , Gatos , Neuronas/fisiología , Sistema Nervioso Simpático/fisiologíaRESUMEN
Heat dissipation from the rat's tail is reduced in response to cold and during fever. The sympathetic premotor neurons for this mechanism, located in the medullary raphé, are under tonic inhibitory control from the preoptic area. In parallel with the inhibitory pathway, an excitatory pathway from the rostromedial preoptic region (RMPO) to the medullary raphé mediates the vasoconstrictor response to cold skin. Whether this applies also to the tail vasoconstrictor response in fever is unknown. Single- or a few-unit tail sympathetic nerve activity (SNA) was recorded in urethane-anesthetized, artificially ventilated rats. Experimental fever was induced by PGE2 injected into the lateral cerebral ventricle (50 ng in 1.5 µl icv) or into the RMPO (0.2 ng in 60 nl); in both cases, there was a robust increase in tail SNA and a delayed rise in core temperature. Microinjection of glutamate receptor antagonist kynurenate (50 mM, 120 nl) into the medullary raphé completely reversed the tail SNA response to intracerebroventricular or RMPO PGE2 injection. Inhibiting RMPO neurons by microinjecting glycine (0.5 M, 60 nl) or the GABAA receptor agonist, muscimol (2 mM, 30-60 nl), reduced the tail SNA response to PGE2 injected into the same site by approximately half. Vehicle injections into the medullary raphé or RMPO were without effect. These results suggest that the tail vasoconstrictor response during experimental fever depends on a glutamatergic excitatory synaptic relay in the medullary raphé and that an excitatory output signal from the RMPO contributes to the tail vasoconstrictor response during fever.
Asunto(s)
Fiebre/fisiopatología , Área Preóptica/fisiología , Núcleos del Rafe/fisiología , Transducción de Señal/fisiología , Cola (estructura animal)/irrigación sanguínea , Cola (estructura animal)/inervación , Vasoconstricción/fisiología , Animales , Dinoprostona/efectos adversos , Antagonistas de Aminoácidos Excitadores/farmacología , Fiebre/inducido químicamente , Glicina/farmacología , Ácido Quinurénico/farmacología , Masculino , Microinyecciones , Modelos Animales , Muscimol/farmacología , Área Preóptica/efectos de los fármacos , Núcleos del Rafe/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sistema Nervioso Simpático/fisiología , Cola (estructura animal)/fisiologíaRESUMEN
Functional MRI was used to identify regions in the human brain stem activated during thermal and psychogenic sweating. Two groups of healthy participants aged 34.4 ± 10.2 and 35.3 ± 11.8 years (both groups comprising 1 woman and 10 men) were either heated by a water-perfused tube suit or subjected to a Stroop test, while they lay supine with their head in a 3-T MRI scanner. Sweating events were recorded as electrodermal responses (increases in AC conductance) from the palmar surfaces of fingers. Each experimental session consisted of two 7.9-min runs, during which a mean of 7.3 ± 2.1 and 10.2 ± 2.5 irregular sweating events occurred during psychogenic (Stroop test) and thermal sweating, respectively. The electrodermal waveform was used as the regressor in each subject and run to identify brain stem clusters with significantly correlated blood oxygen level-dependent signals in the group mean data. Clusters of significant activation were found with both psychogenic and thermal sweating, but a voxelwise comparison revealed no brain stem cluster whose signal differed significantly between the two conditions. Bilaterally symmetric regions that were activated by both psychogenic and thermal sweating were identified in the rostral lateral midbrain and in the rostral lateral medulla. The latter site, between the facial nuclei and pyramidal tracts, corresponds to a neuron group found to drive sweating in animals. These studies have identified the brain stem regions that are activated with sweating in humans and indicate that common descending pathways may mediate both thermal and psychogenic sweating.
Asunto(s)
Temperatura Corporal/fisiología , Tronco Encefálico/fisiología , Sudoración/fisiología , Adulto , Mapeo Encefálico , Femenino , Neuroimagen Funcional , Calor , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana EdadRESUMEN
BACKGROUND: The autonomic nervous system can modulate the innate immune responses to bacterial infections via the splanchnic sympathetic nerves. Here, we aimed to determine the effects of bilateral splanchnic sympathetic nerve denervation on blood pressure, plasma cytokines, blood bacterial counts and the clinical state in sheep with established bacteremia. METHODS: Conscious Merino ewes received an intravenous infusion of Escherichia coli for 30 h (1 × 109 colony forming units/mL/h) to induce bacteremia. At 24 h, sheep were randomized to have bilaterally surgically implanted snares pulled to induce splanchnic denervation (N = 10), or not pulled (sham; N = 9). RESULTS: Splanchnic denervation did not affect mean arterial pressure (84 ± 3 vs. 84 ± 4 mmHg, mean ± SEM; PGroup = 0.7) compared with sham treatment at 30-h of bacteremia. Splanchnic denervation increased the plasma levels of the pro-inflammatory cytokine interleukin-6 (9.2 ± 2.5 vs. 3.8 ± 0.3 ng/mL, PGroup = 0.031) at 25-h and reduced blood bacterial counts (2.31 ± 0.45 vs. 3.45 ± 0.11 log10 [CFU/mL + 1], PGroup = 0.027) at 26-h compared with sham treatment. Plasma interleukin-6 and blood bacterial counts returned to sham levels by 30-h. There were no differences in the number of bacteria present within the liver (PGroup = 0.3). However, there was a sustained improvement in clinical status, characterized by reduced respiratory rate (PGroup = 0.024) and increased cumulative water consumption (PGroup = 0.008) in splanchnic denervation compared with sham treatment. CONCLUSION: In experimental Gram-negative bacteremia, interrupting splanchnic sympathetic nerve activity increased plasma interleukin-6, accelerated bacterial clearance, and improved clinical state without inducing hypotension. These findings suggest that splanchnic neural manipulation is a potential target for pharmacological or non-pharmacological interventions.
RESUMEN
Blood flow to glabrous skin such as the rat's tail determines heat dissipation from the body and is regulated by sympathetic vasoconstrictor nerves. Tail vasoconstrictor activity is tonically inhibited by neurons in two distinct preoptic regions, rostromedial (RMPO) and caudolateral (CLPO) regions, whose actions may be via direct projections to medullary raphé premotor neurons. In urethane-anesthetized rats, we sought single preoptic neurons that were antidromically activated from the medullary raphé and could subserve this function. Nine of 45 raphé-projecting preoptic neurons, predominantly in the CLPO, showed spontaneous activity under warm conditions and were inhibited by cooling the trunk skin (warm-responsive). Unexpectedly, 14 raphé-projecting preoptic neurons (mostly in the RMPO) were activated by skin cooling (cold-responsive), suggesting that an excitatory pathway from this region could contribute to tail vasoconstriction. Supporting this, neuronal disinhibition in the RMPO by microinjecting the GABA(A) receptor antagonist bicuculline (0.5 mm, 15 nl) caused a rapid increase in tail sympathetic nerve activity (SNA). Similar injections into the CLPO were without effect. Electrical stimulation of the RMPO also activated tail SNA, with a latency â¼25 ms longer than to stimulation of the medullary raphé. Injection of the glutamate receptor antagonist kynurenate (50 mm, 120 nl) into the medullary raphé suppressed tail SNA responses to both RMPO bicuculline and skin cooling. These findings suggest that both inhibitory and excitatory descending drives regulate tail vasoconstriction in the cold and that warm- and cold-responsive raphé-projecting preoptic neurons may mediate these actions.