Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587174

RESUMEN

The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Organoides , Factores de Transcripción del Factor Regulador X , Transactivadores , Humanos , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Transactivadores/metabolismo , Transactivadores/genética , Organoides/metabolismo , Organoides/embriología , Duodeno/metabolismo , Duodeno/embriología , Intestinos/embriología , Atresia Intestinal/genética , Células Madre Pluripotentes Inducidas/metabolismo , Tipificación del Cuerpo/genética , Transducción de Señal/genética , Mutación/genética
2.
EMBO J ; 41(2): e106973, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34704277

RESUMEN

Circadian rhythms regulate diverse aspects of gastrointestinal physiology ranging from the composition of microbiota to motility. However, development of the intestinal circadian clock and detailed mechanisms regulating circadian physiology of the intestine remain largely unknown. In this report, we show that both pluripotent stem cell-derived human intestinal organoids engrafted into mice and patient-derived human intestinal enteroids possess circadian rhythms and demonstrate circadian phase-dependent necrotic cell death responses to Clostridium difficile toxin B (TcdB). Intriguingly, mouse and human enteroids demonstrate anti-phasic necrotic cell death responses to TcdB. RNA-Seq analysis shows that ~3-10% of the detectable transcripts are rhythmically expressed in mouse and human enteroids. Remarkably, we observe anti-phasic gene expression of Rac1, a small GTPase directly inactivated by TcdB, between mouse and human enteroids, and disruption of Rac1 abolishes clock-dependent necrotic cell death responses. Our findings uncover robust functions of circadian rhythms regulating clock-controlled genes in both mouse and human enteroids governing organism-specific, circadian phase-dependent necrotic cell death responses, and lay a foundation for human organ- and disease-specific investigation of clock functions using human organoids for translational applications.


Asunto(s)
Relojes Circadianos , Yeyuno/citología , Organoides/metabolismo , Animales , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Muerte Celular , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Organoides/efectos de los fármacos , Organoides/fisiología , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
3.
Development ; 150(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070767

RESUMEN

The in vitro differentiation of pluripotent stem cells into human intestinal organoids (HIOs) has served as a powerful means for creating complex three-dimensional intestinal structures. Owing to their diverse cell populations, transplantation into an animal host is supported with this system and allows the temporal formation of fully laminated structures, including crypt-villus architecture and smooth muscle layers that resemble native human intestine. Although the endpoint of HIO engraftment has been well described, here we aim to elucidate the developmental stages of HIO engraftment and establish whether it parallels fetal human intestinal development. We analyzed a time course of transplanted HIOs histologically at 2, 4, 6 and 8 weeks post-transplantation, and demonstrated that HIO maturation closely resembles key stages of fetal human intestinal development. We also utilized single-nuclear RNA sequencing to determine and track the emergence of distinct cell populations over time, and validated our transcriptomic data through in situ protein expression. These observations suggest that transplanted HIOs do indeed recapitulate early intestinal development, solidifying their value as a human intestinal model system.


Asunto(s)
Intestinos , Células Madre Pluripotentes , Animales , Humanos , Mucosa Intestinal/metabolismo , Organoides , Diferenciación Celular
4.
Gastroenterology ; 163(4): 1053-1063.e7, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35803312

RESUMEN

BACKGROUND & AIMS: Two patients with homozygous mutations in PDX1 presented with pancreatic agenesis, chronic diarrhea, and poor weight gain, the causes of which were not identified through routine clinical testing. We aimed to perform a deep analysis of the stomach and intestine using organoids derived from induced pluripotent stem cells from PDX1188delC/188delC patients. METHODS: Gastric fundic, antral, and duodenal organoids were generated using induced pluripotent stem cell lines from a PDX1188delC/188delC patient and an isogenic induced pluripotent stem cell line where the PDX1 point mutation was corrected. RESULTS: Patient-derived PDX1188delC/188delC antral organoids exhibited an intestinal phenotype, whereas intestinal organoids underwent gastric metaplasia with significant reduction in enteroendocrine cells. This prompted a re-examination of gastric and intestinal biopsy specimens from both PDX1188delC/188delC patients, which recapitulated the organoid phenotypes. Moreover, antral biopsy specimens also showed increased parietal cells and lacked G cells, suggesting loss of antral identity. All organoid pathologies were reversed upon CRISPR-mediated correction of the mutation. CONCLUSIONS: These patients will now be monitored for the progression of metaplasia and gastrointestinal complications that might be related to the reduced gastric and intestinal endocrine cells. This study demonstrates the utility of organoids in diagnosing uncovered pathologies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Metaplasia/metabolismo , Mutación , Organoides/metabolismo , Estómago
5.
Development ; 145(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30143540

RESUMEN

Enteroendocrine cells (EECs) are a minor cell population in the intestine yet they play a major role in digestion, satiety and nutrient homeostasis. Recently developed human intestinal organoid models include EECs, but their rarity makes it difficult to study their formation and function. Here, we used the EEC-inducing property of the transcription factor NEUROG3 in human pluripotent stem cell-derived human intestinal organoids and colonic organoids to promote EEC development in vitro An 8-h pulse of NEUROG3 expression induced expression of known target transcription factors and after 7 days organoids contained up to 25% EECs in the epithelium. EECs expressed a broad array of human hormones at the mRNA and/or protein level, including motilin, somatostatin, neurotensin, secretin, substance P, serotonin, vasoactive intestinal peptide, oxyntomodulin, GLP-1 and INSL5. EECs secreted several hormones including gastric inhibitory polypeptide (GIP), ghrelin, GLP-1 and oxyntomodulin. Injection of glucose into the lumen of organoids caused an increase in both GIP secretion and K-cell number. Lastly, we observed formation of all known small intestinal EEC subtypes following transplantation and growth of human intestinal organoids in mice.


Asunto(s)
Células Enteroendocrinas/citología , Células Enteroendocrinas/metabolismo , Células Madre Pluripotentes/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Recuento de Células , Diferenciación Celular , Hormonas/metabolismo , Humanos , Intestinos/citología , Proteínas del Tejido Nervioso/metabolismo , Organoides/citología , Células Madre Pluripotentes/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo
6.
Development ; 144(6): 958-962, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28292841

RESUMEN

Pluripotent stem cell (PSC)-derived organoids are miniature, three-dimensional human tissues generated by the application of developmental biological principles to PSCs in vitro The approach to generate organoids uses a combination of directed differentiation, morphogenetic processes, and the intrinsically driven self-assembly of cells that mimics organogenesis in the developing embryo. The resulting organoids have remarkable cell type complexity, architecture and function similar to their in vivo counterparts. In the past five years, human PSC-derived organoids with components of all three germ layers have been generated, resulting in the establishment of a new human model system. Here, and in the accompanying poster, we provide an overview of how principles of developmental biology have been essential for generating human organoids in vitro, and how organoids are now being used as a primary research tool to investigate human developmental biology.


Asunto(s)
Biología Evolutiva , Organoides/citología , Células Madre Pluripotentes/citología , Técnicas de Cultivo de Tejidos/métodos , Animales , Tipificación del Cuerpo , Enfermedad , Humanos
7.
J Nutr ; 150(1): 10-21, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504661

RESUMEN

Enteroendocrine cells (EECs) in the intestine regulate many aspects of whole-body physiology and metabolism. EECs sense luminal and circulating nutrients and respond by secreting hormones that act on multiple organs and organ systems, such as the brain, gallbladder, and pancreas, to control satiety, digestion, and glucose homeostasis. In addition, EECs act locally, on enteric neurons, endothelial cells, and the gastrointestinal epithelium, to facilitate digestion and absorption of nutrients. Many recent reports raise the possibility that EECs and the enteric nervous system may coordinate to regulate gastrointestinal functions. Loss of all EECs results in chronic malabsorptive diarrhea, placing EECs in a central role regulating nutrient absorption in the gut. Because there is increasing evidence that EECs can directly modulate the efficiency of nutrient absorption, it is possible that EECs are master regulators of a feed-forward loop connecting appetite, digestion, metabolism, and abnormally augmented nutrient absorption that perpetuates metabolic disease. This review focuses on the roles that specific EEC hormones play on glucose, peptide, and lipid absorption within the intestine.


Asunto(s)
Células Enteroendocrinas/fisiología , Nutrientes/metabolismo , Animales , Transporte Biológico/fisiología , Tracto Gastrointestinal/fisiología , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Síndromes de Malabsorción
8.
Development ; 141(23): 4628-39, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25377551

RESUMEN

The ocular surface epithelia, including the stratified but non-keratinized corneal, limbal and conjunctival epithelium, in concert with the epidermal keratinized eyelid epithelium, function together to maintain eye health and vision. Abnormalities in cellular proliferation or differentiation in any of these surface epithelia are central in the pathogenesis of many ocular surface disorders. Goblet cells are important secretory cell components of various epithelia, including the conjunctiva; however, mechanisms that regulate goblet cell differentiation in the conjunctiva are not well understood. Herein, we report that conditional deletion of transforming growth factor ß receptor II (Tgfbr2) in keratin 14-positive stratified epithelia causes ocular surface epithelial hyperplasia and conjunctival goblet cell expansion that invaginates into the subconjunctival stroma in the mouse eye. We found that, in the absence of an external phenotype, the ocular surface epithelium develops properly, but young mice displayed conjunctival goblet cell expansion, demonstrating that TGFß signaling is required for normal restriction of goblet cells within the conjunctiva. We observed increased expression of SAM-pointed domain containing ETS transcription factor (SPDEF) in stratified conjunctival epithelial cells in Tgfbr2 cKO mice, suggesting that TGFß restricted goblet cell differentiation directly by repressing Spdef transcription. Gain of function of Spdef in keratin 14-positive epithelia resulted in the ectopic formation of goblet cells in the eyelid and peripheral cornea in adult mice. We found that Smad3 bound two distinct sites on the Spdef promoter and that treatment of keratin 14-positive cells with TGFß inhibited SPDEF activation, thereby identifying a novel mechanistic role for TGFß in regulating goblet cell differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Conjuntiva/crecimiento & desarrollo , Células Caliciformes/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Inmunoprecipitación de Cromatina , Conjuntiva/citología , Citometría de Flujo , Técnicas Histológicas , Queratina-14/metabolismo , Captura por Microdisección con Láser , Luciferasas , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Proteína smad3/metabolismo
9.
Cell Mol Gastroenterol Hepatol ; 15(6): 1293-1310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36608902

RESUMEN

BACKGROUND & AIMS: The intestinal stem cell niche is exquisitely sensitive to changes in diet, with high-fat diet, caloric restriction, and fasting resulting in altered crypt metabolism and intestinal stem cell function. Unlike cells on the villus, cells in the crypt are not immediately exposed to the dynamically changing contents of the lumen. We hypothesized that enteroendocrine cells (EECs), which sense environmental cues and in response release hormones and metabolites, are essential for relaying the luminal and nutritional status of the animal to cells deep in the crypt. METHODS: We used the tamoxifen-inducible VillinCreERT2 mouse model to deplete EECs (Neurog3fl/fl) from adult intestinal epithelium and we generated human intestinal organoids from wild-type and NEUROGENIN 3 (NEUROG3)-null human pluripotent stem cells. We used indirect calorimetry, 1H-Nuclear Magnetic Resonance (NMR) metabolomics, mitochondrial live imaging, and the Seahorse bioanalyzer (Agilent Technologies) to assess metabolism. Intestinal stem cell activity was measured by proliferation and enteroid-forming capacity. Transcriptional changes were assessed using 10x Genomics single-cell sequencing. RESULTS: Loss of EECs resulted in increased energy expenditure in mice, an abundance of active mitochondria, and a shift of crypt metabolism to fatty acid oxidation. Crypts from mouse and human intestinal organoids lacking EECs displayed increased intestinal stem cell activity and failed to activate phosphorylation of downstream target S6 kinase ribosomal protein, a marker for activity of the master metabolic regulator mammalian target of rapamycin (mTOR). These phenotypes were similar to those observed when control mice were deprived of nutrients. CONCLUSIONS: EECs are essential regulators of crypt metabolism. Depletion of EECs recapitulated a fasting metabolic phenotype despite normal levels of ingested nutrients. These data suggest that EECs are required to relay nutritional information to the stem cell niche and are essential regulators of intestinal metabolism.


Asunto(s)
Células Madre Pluripotentes , Nicho de Células Madre , Ratones , Humanos , Animales , Células Enteroendocrinas/metabolismo , Intestinos , Nutrientes , Mamíferos
10.
Cell Stem Cell ; 30(11): 1434-1451.e9, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37922878

RESUMEN

Most organs have tissue-resident immune cells. Human organoids lack these immune cells, which limits their utility in modeling many normal and disease processes. Here, we describe that pluripotent stem cell-derived human colonic organoids (HCOs) co-develop a diverse population of immune cells, including hemogenic endothelium (HE)-like cells and erythromyeloid progenitors that undergo stereotypical steps in differentiation, resulting in the generation of functional macrophages. HCO macrophages acquired a transcriptional signature resembling human fetal small and large intestine tissue-resident macrophages. HCO macrophages modulate cytokine secretion in response to pro- and anti-inflammatory signals and were able to phagocytose and mount a robust response to pathogenic bacteria. When transplanted into mice, HCO macrophages were maintained within the colonic organoid tissue, established a close association with the colonic epithelium, and were not displaced by the host bone-marrow-derived macrophages. These studies suggest that HE in HCOs gives rise to multipotent hematopoietic progenitors and functional tissue-resident macrophages.


Asunto(s)
Células Madre Pluripotentes , Humanos , Ratones , Animales , Células Madre Hematopoyéticas , Colon , Organoides , Macrófagos
11.
Cell Rep ; 41(7): 111641, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36384107

RESUMEN

Long-term impacts of diet have been well studied; however, the immediate response of the intestinal epithelium to a change in nutrients remains poorly understood. We use physiological metrics and single-cell transcriptomics to interrogate the intestinal epithelial cell response to a high-fat diet (HFD). Within 1 day of HFD exposure, mice exhibit altered whole-body physiology and increased intestinal epithelial proliferation. Single-cell transcriptional analysis on day 1 reveals a cell-stress response in intestinal crypts and a shift toward fatty acid metabolism. By 3 days of HFD, computational trajectory analysis suggests an emergence of progenitors, with a transcriptional profile shifting from secretory populations toward enterocytes. Furthermore, enterocytes upregulate lipid absorption genes and show increased lipid absorption in vivo over 7 days of HFD. These findings demonstrate the rapid intestinal epithelial response to a dietary change and help illustrate the essential ability of animals to adapt to shifting nutritional environments.


Asunto(s)
Dieta Alta en Grasa , Mucosa Intestinal , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos , Adaptación Fisiológica , Lípidos
12.
J AOAC Int ; 94(5): 1601-16, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22165027

RESUMEN

A rapid, sensitive, and accurate method for the screening and determination of polycyclic aromatic hydrocarbons (PAHs) in edible seafood is described. The method uses quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based extraction and HPLC with fluorescence detection (FLD). The method was developed and validated in response to the massive Deepwater Horizon oil spill in the Gulf of Mexico. Rapid and highly sensitive PAH screening methods are critical tools needed for oil spill response; they help to assess when seafood is safe for harvesting and consumption. Sample preparation involves SPE of edible seafood portions with acetonitrile, followed by the addition of salts to induce water partitioning. After centrifugation, a portion of the acetonitrile layer is filtered prior to analysis via HPLC-FLD. The chromatographic method uses a polymeric C18 stationary phase designed for PAH analysis with gradient elution, and it resolves 15 U.S. Environmental Protection Agency priority parent PAHs in fewer than 20 min. The procedure was validated in three laboratories for the parent PAHs using spike recovery experiments at PAH fortification levels ranging from 25 to 10 000 microg/kg in oysters, shrimp, crab, and finfish, with recoveries ranging from 78 to 99%. Additional validation was conducted for a series of alkylated homologs of naphthalene, dibenzothiophene, and phenanthrene, with recoveries ranging from 87 to 128%. Method accuracy was further assessed based on analysis of National Institute of Standards and Technology Standard Reference Material 1974b. The method provides method detection limits in the sub to low ppb (microg/kg) range, and practical LOQs in the low ppb (microg/kg) range for most of the PAH compounds studied.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/análisis , Alimentos Marinos/análisis , Alquilación , Animales , Calibración , Cromatografía Líquida de Alta Presión , Peces , Cromatografía de Gases y Espectrometría de Masas , Indicadores y Reactivos , Límite de Detección , Contaminación por Petróleo , Estándares de Referencia , Reproducibilidad de los Resultados , Mariscos , Espectrometría de Fluorescencia , Estados Unidos , United States Environmental Protection Agency
13.
Nat Commun ; 11(1): 4791, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963229

RESUMEN

The ability to absorb ingested nutrients is an essential function of all metazoans and utilizes a wide array of nutrient transporters found on the absorptive enterocytes of the small intestine. A unique population of patients has previously been identified with severe congenital malabsorptive diarrhea upon ingestion of any enteral nutrition. The intestines of these patients are macroscopically normal, but lack enteroendocrine cells (EECs), suggesting an essential role for this rare population of nutrient-sensing cells in regulating macronutrient absorption. Here, we use human and mouse models of EEC deficiency to identify an unappreciated role for the EEC hormone peptide YY in regulating ion-coupled absorption of glucose and dipeptides. We find that peptide YY is required in the small intestine to maintain normal electrophysiology in the presence of vasoactive intestinal polypeptide, a potent stimulator of ion secretion classically produced by enteric neurons. Administration of peptide YY to EEC-deficient mice restores normal electrophysiology, improves glucose and peptide absorption, diminishes diarrhea and rescues postnatal survival. These data suggest that peptide YY is a key regulator of macronutrient absorption in the small intestine and may be a viable therapeutic option to treat patients with electrolyte imbalance and nutrient malabsorption.


Asunto(s)
Células Enteroendocrinas/metabolismo , Absorción Intestinal/fisiología , Transporte Iónico/fisiología , Nutrientes/metabolismo , Animales , Enterocitos , Glucosa/metabolismo , Células Madre Embrionarias Humanas , Humanos , Intestino Delgado , Intestinos , Ratones , Ratones Endogámicos C57BL , Péptido YY , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Intercambiador 3 de Sodio-Hidrógeno , Agua/metabolismo
14.
Cell Mol Gastroenterol Hepatol ; 10(1): 171-190, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32145469

RESUMEN

BACKGROUND & AIMS: Shiga toxin (Stx)-producing Escherichia coli (eg, O157:H7) infection produces bloody diarrhea, while Stx inhibits protein synthesis and causes the life-threatening systemic complication of hemolytic uremic syndrome. The murine intestinal tract is resistant to O157:H7 and Stx, and human cells in culture fail to model the complex tissue responses to intestinal injury. We used genetically identical, human stem cell-derived intestinal tissues of varying complexity to study Stx toxicity in vitro and in vivo. METHODS: In vitro susceptibility to apical or basolateral exposure to Stx was assessed using human intestinal organoids (HIOs) derived from embryonic stem cells, or enteroids derived from multipotent intestinal stem cells. HIOs contain a lumen, with a single layer of differentiated epithelium surrounded by mesenchymal cells. Enteroids only contain epithelium. In vivo susceptibility was assessed using HIOs, with or without an enteric nervous system, transplanted into mice. RESULTS: Stx induced necrosis and apoptotic death in both epithelial and mesenchymal cells. Responses that require protein synthesis (cellular proliferation and wound repair) also were observed. Epithelial barrier function was maintained even after epithelial cell death was seen, and apical to basolateral translocation of Stx was seen. Tissue cross-talk, in which mesenchymal cell damage caused epithelial cell damage, was observed. Stx induced mesenchymal expression of the epithelial marker E-cadherin, the initial step in mesenchymal-epithelial transition. In vivo responses of HIO transplants injected with Stx mirrored those seen in vitro. CONCLUSIONS: Intestinal tissue responses to protein synthesis inhibition by Stx are complex. Organoid models allow for an unprecedented examination of human tissue responses to a deadly toxin.


Asunto(s)
Células Epiteliales/patología , Infecciones por Escherichia coli/patología , Síndrome Hemolítico-Urémico/patología , Toxinas Shiga/toxicidad , Animales , Apoptosis , Línea Celular , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Síndrome Hemolítico-Urémico/microbiología , Células Madre Embrionarias Humanas , Humanos , Mucosa Intestinal , Ratones , Necrosis , Organoides , Toxinas Shiga/metabolismo , Escherichia coli Shiga-Toxigénica/metabolismo , Escherichia coli Shiga-Toxigénica/patogenicidad
15.
Dev Cell ; 50(3): 367-380.e7, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31178402

RESUMEN

Neurogenin3 (NEUROG3) is required for endocrine lineage formation of the pancreas and intestine. Patients with NEUROG3 mutations are born with congenital malabsorptive diarrhea due to complete loss of enteroendocrine cells, whereas endocrine pancreas development varies in an allele-specific manner. These findings suggest a context-dependent requirement for NEUROG3 in pancreas versus intestine. We utilized human tissue differentiated from NEUROG3-/- pluripotent stem cells for functional analyses. Most disease-associated alleles had hypomorphic or null phenotype in both tissues, whereas the S171fsX68 mutation had reduced activity in the pancreas but largely null in the intestine. Biochemical studies revealed NEUROG3 variants have distinct molecular defects with altered protein stability, DNA binding, and gene transcription. Moreover, NEUROG3 was highly unstable in the intestinal epithelium, explaining the enhanced sensitivity of intestinal defects relative to the pancreas. These studies emphasize that studies of human mutations in the endogenous tissue context may be required to assess structure-function relationships.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diarrea/congénito , Síndromes de Malabsorción/genética , Mutación , Proteínas del Tejido Nervioso/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Diarrea/genética , Células Madre Embrionarias Humanas/metabolismo , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Organoides/citología , Organoides/metabolismo , Páncreas/citología , Páncreas/crecimiento & desarrollo , Páncreas/metabolismo , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica
16.
Cell Metab ; 30(2): 374-384.e6, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31155493

RESUMEN

Human organoid systems recapitulate in vivo organ architecture yet fail to capture complex pathologies such as inflammation and fibrosis. Here, using 11 different healthy and diseased pluripotent stem cell lines, we developed a reproducible method to derive multi-cellular human liver organoids composed of hepatocyte-, stellate-, and Kupffer-like cells that exhibit transcriptomic resemblance to in vivo-derived tissues. Under free fatty acid treatment, organoids, but not reaggregated cocultured spheroids, recapitulated key features of steatohepatitis, including steatosis, inflammation, and fibrosis phenotypes in a successive manner. Interestingly, an organoid-level biophysical readout with atomic force microscopy demonstrated that organoid stiffening reflects the fibrosis severity. Furthermore, organoids from patients with genetic dysfunction of lysosomal acid lipase phenocopied severe steatohepatitis, rescued by FXR agonism-mediated reactive oxygen species suppression. The presented key methodology and preliminary results offer a new approach for studying a personalized basis for inflammation and fibrosis in humans, thus facilitating the discovery of effective treatments.


Asunto(s)
Hígado Graso/patología , Modelos Biológicos , Organoides/citología , Organoides/patología , Células Madre Pluripotentes/citología , Células Cultivadas , Hígado Graso/metabolismo , Humanos , Masculino
17.
Lab Chip ; 18(20): 3079-3085, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30238091

RESUMEN

Current in vitro approaches and animal models have critical limitations for modeling human gastrointestinal diseases because they may not properly represent multicellular human primary tissues. Therefore, there is a need for model platforms that recapitulate human in vivo development, physiology, and disease processes to validate new therapeutics. One of the major steps toward this goal was the generation of three-dimensional (3D) human gastric organoids (hGOs) via the directed differentiation of human pluripotent stem cells (hPSCs). The normal functions and diseases of the stomach occur in the luminal epithelium, however accessing the epithelium on the inside of organoids is challenging. We sought to develop a bioengineered platform to introduce luminal flow through hGOs to better model in vivo gastric functions. Here, we report an innovative microfluidic imaging platform housing hGOs with peristaltic luminal flow in vitro. This human stomach-on-a-chip allows robust, long-term, 3D growth of hGOs with the capacity for luminal delivery via a peristaltic pump. Organoids were cannulated and medium containing fluorescent dextran was delivered through the lumen using a peristaltic pump. This system also allowed us to rhythmically introduce stretch and contraction to the organoid, reminiscent of gastric motility. Our platform has the potential for long-term delivery of nutrients or pharmacological agents into the gastric lumen in vitro for the study of human gastric physiology, disease modeling, and drug screening, among other possibilities.


Asunto(s)
Motilidad Gastrointestinal , Estómago/citología , Estómago/fisiología , Análisis de Matrices Tisulares/métodos , Humanos , Organoides/citología , Análisis de Matrices Tisulares/instrumentación
18.
Bio Protoc ; 7(17): e2524, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34541183

RESUMEN

Most epithelial tumors have been shown to contain cancer stem cells that are potentially the driving force in tumor progression and metastasis (Kreso and Dick, 2014; Nassar and Blanpain, 2016). To study these cells in depth, cell isolation strategies relying on cell surface markers or fluorescent reporters are essential, and the isolation strategies must preserve their viability. The ability to isolate different populations of cells from the bulk of the tumor will continue to deepen our understanding of the biology of cancer stem cells. Here, we report the strategy combining mechanical tumor dissociation, enzymatic treatment and flow cytometry to isolate a pure population of epithelial cancer stem cells from their native microenvironment. This technique can be useful to further functionally profile the cancer stem cells (RNA sequencing and epigenetic analysis), grow them in culture or use them directly in transplantation assays.

19.
Elife ; 62017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28219480

RESUMEN

Squamous cell carcinomas occurring at transition zones are highly malignant tumors with poor prognosis. The identity of the cell population and the signaling pathways involved in the progression of transition zone squamous cell carcinoma are poorly understood, hence representing limited options for targeted therapies. Here, we identify a highly tumorigenic cancer stem cell population in a mouse model of transitional epithelial carcinoma and uncover a novel mechanism by which loss of TGFß receptor II (Tgfbr2) mediates invasion and metastasis through de-repression of ELMO1, a RAC-activating guanine exchange factor, specifically in cancer stem cells of transition zone tumors. We identify ELMO1 as a novel target of TGFß signaling and show that restoration of Tgfbr2 results in a complete block of ELMO1 in vivo. Knocking down Elmo1 impairs metastasis of carcinoma cells to the lung, thereby providing insights into the mechanisms of progression of Tgfbr2-deficient invasive transition zone squamous cell carcinoma.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma de Células Escamosas/fisiopatología , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Receptores de Factores de Crecimiento Transformadores beta/deficiencia , Animales , Modelos Animales de Enfermedad , Ratones , Metástasis de la Neoplasia , Receptor Tipo II de Factor de Crecimiento Transformador beta
20.
Cell Stem Cell ; 18(3): 295-7, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942844

RESUMEN

Two promising approaches toward a cell-based cure for diabetes are the directed differentiation of pluripotent stem cells or lineage reprogramming of other cell types to generate beta cells. In this issue of Cell Stem Cell, Ariyachet et al. (2016) reprogrammed gastric endocrine cells to generate a renewable source of insulin-producing cells.


Asunto(s)
Diferenciación Celular , Insulina/metabolismo , Reprogramación Celular , Humanos , Células Secretoras de Insulina/citología , Células Madre Pluripotentes/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA