Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Appl Clin Med Phys ; 21(10): 56-62, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32794632

RESUMEN

PURPOSE/BACKGROUND: We analyzed the predictive value of non-x-ray voxel Monte Carlo (XVMC)-based modeling of tumor control probability (TCP) and normal tissue complication probability (NTCP) in patients treated with stereotactic body radiotherapy (SBRT) using the XVMC dose calculation algorithm. MATERIALS/METHODS: We conducted an IRB-approved retrospective analysis in patients with lung tumors treated with XVMC-based lung SBRT. For TCP, we utilized tumor size-adjusted biological effective dose (s-BED) TCP modeling validated in non-MC dose calculated SBRT to: (1) verify modeling as a function of s-BED in patients treated with XVMC-based SBRT; and (2) evaluate the predictive potential of different PTV dosimetric parameters (mean dose, minimum dose, max dose, prescription dose, D95, D98, and D99) for incorporation into the TCP model. Correlation between observed local control and TCPs was assessed by Pearson's correlation coefficient. For NTCP, Lyman NTCP Model was utilized to predict grade 2 pneumonitis and rib fracture. RESULTS: Eighty-four patients with 109 lung tumors were treated with XVMC-based SBRT to total doses of 40 to 60 Gy in 3 to 5 fractions. Median follow-up was 17 months. The 2-year local and local-regional control rates were 91% and and 78%, respectievly. All estimated TCPs correlated significantly with 2-year actuarial local control rates (P < 0.05). Significant corelations between TCPs and tumor control rate according to PTV dosimetric parameters were observed. D99 parameterization demonstrated the most robust correlation between observed and predicted tumor control. The incidences of grade 2 pneumonitis and rib fracture vs. predicted were 1% vs. 3% and 10% vs. 13%, respectively. CONCLUSION: Our TCP results using a XVMC-based dose calculation algorithm are encouraging and yield validation to previously described TCP models using non-XVMC dose methods. Furthermore, D99 as potential predictive parameter in the TCP model demonstrated better correlation with clinical outcome.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Algoritmos , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Probabilidad , Radiocirugia/efectos adversos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
2.
J Appl Clin Med Phys ; 18(2): 136-143, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28300370

RESUMEN

PURPOSE/OBJECTIVES: To present our linac-based SRS procedural technique for medically and/or surgically refractory trigeminal neuralgia (TN) treatment and simultaneously report our clinical outcomes. MATERIALS AND METHODS: Twenty-seven refractory TN patients who were treated with a single fraction of 80 Gy to TN. Treatment delivery was performed with a 4 mm cone size using 7-arc arrangement with differential-weighting for Novalis-TX with six MV-SRS (1000 MU/min) beam and minimized dose to the brainstem. Before each treatment, Winston-Lutz quality assurance (QA) with submillimeter accuracy was performed. Clinical treatment response was evaluated using Barrow Neurological Institute (BNI) pain intensity score, rated from I to V. RESULTS: Out of 27 patients, 22 (81%) and 5 (19%) suffered from typical and atypical TN, respectively, and had median follow-up interval of 12.5 months (ranged: 1-53 months). For 80 Gy prescriptions, delivered total average MU was 19440 ± 611. Average beam-on-time was 19.4 ± 0.6 min. Maximum dose and dose to 0.5 cc of brainstem were 13.4 ± 2.1 Gy (ranged: 8.4-15.9 Gy) and 3.6 ± 0.4 Gy (ranged: 3.0-4.9 Gy), respectively. With a median follow-up of 12.5 months (ranged: 1-45 months) in typical TN patients, the proportion of patients achieving overall pain relief was 82%, of which half achieved a complete pain relief with BNI score of I-II and half demonstrated partial pain reduction with BNI score of IIIA-IIIB. Four typical TN patients (18%) had no response to radiosurgery treatment. Of the patients who responded to treatment, actuarial pain recurrence free survival rates were approximately 100%, 75%, and 50% at 12 months, 15 months, and 24 months, respectively. Five atypical TN patients were included, who did not respond to treatment (BNI score: IV-V). However, no radiation-induced cranial-toxicity was observed in all patients treated. CONCLUSION: Linac-based SRS for medically and/or surgically refractory TN is a fast, effective, and safe treatment option for patients with typical TN who had excellent response rates. Patients, who achieve response to treatment, often have durable response rates with moderate actuarial pain recurrence free survival. Longer follow-up interval is anticipated to confirm our clinical observations.


Asunto(s)
Radiocirugia/instrumentación , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Neuralgia del Trigémino/cirugía , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dimensión del Dolor , Evaluación del Resultado de la Atención al Paciente , Garantía de la Calidad de Atención de Salud/normas , Dosificación Radioterapéutica , Recurrencia , Resultado del Tratamiento , Neuralgia del Trigémino/patología
3.
J Appl Clin Med Phys ; 17(2): 258-270, 2016 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-27074489

RESUMEN

The purpose of this study was to generate Monte Carlo computed dose distributions with the X-ray voxel Monte Carlo (XVMC) algorithm in the treatment of head and neck cancer patients using stereotactic radiotherapy (SRT) and compare to heterogeneity corrected pencil-beam (PB-hete) algorithm. This study includes 10 head and neck cancer patients who underwent SRT re-irradiation using heterogeneity corrected pencil-beam (PB-hete) algorithm for dose calculation. Prescription dose was 24-40 Gy in 3-5 fractions (treated 3-5 fractions per week) with at least 95% of the PTV volume receiving 100% of the prescription dose. A stereotactic head and neck localization box was attached to the base of the thermoplastic mask fixation for target localization. The gross tumor volume (GTV) and organs-at-risk (OARs) were contoured on the 3D CT images. The planning target volume (PTV) was generated from the GTV with 0 to 5 mm uniform expansion; PTV ranged from 10.2 to 64.3 cc (average = 35.0±17.5 cc). OARs were contoured on the 3D planning CT and consisted of spinal cord, brainstem, optic structures, parotids, and skin. In the BrainLab treatment planning system (TPS), clinically optimal SRT plans were generated using hybrid planning technique (combination of 3D conformal nonco-planar arcs and nonopposing static beams) for the Novalis-Tx linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5 mm leaf width at isocenter) and 6 MV-SRS (1000 MU/min) beam. For the purposes of this study, treatment plans were recomputed using XVMC algorithm utilizing identical beam geometry, multileaf positions, and monitor units and compared to the corresponding clinical PB-hete plans. The Monte Carlo calculated dose distributions show small decreases (< 1.5%) in calculated dose for D99, Dmean, and Dmax of the PTV coverage between the two algorithms. However, the average target volume encompassed by the prescribed percent dose (Vp) was about 2.5% less with XVMC vs. PB-hete and ranged between -0.1 and 7.8%. The averages for D100 and D10 of the GTV were lower by about 2% and ranged between -0.8 and 3.1%. For the spinal cord, both the maximal dose difference and the dose to 0.35 cc of the structure were higher by an average of 4.2% (ranged 1.2 to -13.6%) and 1.4% (ranged 7.5 to -11.3%), respectively, with XVMC calculation. For the brainstem, the maximal dose dif-ferences and the dose to 0.5 cc of the structure were, on average, higher by 2.4% (ranged 6.4 to -8.0%) and 3.6% (ranged 6.4 to -9.0%), respectively. For the parotids, both the mean dose and the dose to 20 cc of parotids were higher by an average of 3% (ranged -0.2 to -5.9%) and 4% (ranged -0.2 to -8%), respectively, with XVMC calculation. For the optic apparatus, results from both algorithms were similar. However, the mean dose to skin was 3% higher (ranged 0 to -6%), on average, with XVMC compared to PB-hete, although the maximum dose to skin was 2% lower (ranged -5% to 15.5%). The results from our XVMC dose calculations for head and neck SRT patients indicate small to moderate underdosing of the tumor volume when compared to PB-hete calculation. However, Vp was up to 7.8% less for the lower-neck patient with XVMC. Critical structures, such as spinal cord, brainstem, or parotids, could potentially receive higher doses when using XVMC algorithm. Given the proximity to critical structures and the smaller volumes treated with SRT in the region of the head and neck, the differences between XVMC and PB-hete calculation methods may be of clinical interest.


Asunto(s)
Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/cirugía , Imagenología Tridimensional/métodos , Método de Montecarlo , Radiocirugia , Planificación de la Radioterapia Asistida por Computador/métodos , Anciano , Anciano de 80 o más Años , Algoritmos , Femenino , Estudios de Seguimiento , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Persona de Mediana Edad , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Programas Informáticos , Carga Tumoral
4.
J Appl Clin Med Phys ; 17(3): 277-293, 2016 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-27167284

RESUMEN

The purpose of the study was to evaluate Monte Carlo-generated dose distributions with the X-ray Voxel Monte Carlo (XVMC) algorithm in the treatment of peripheral lung cancer patients using stereotactic body radiotherapy (SBRT) with non-protocol dose-volume normalization and to assess plan outcomes utilizing RTOG 0915 dosimetric compliance criteria. The Radiation Therapy Oncology Group (RTOG) protocols for non-small cell lung cancer (NSCLC) currently require radiation dose to be calculated using tissue density heterogeneity corrections. Dosimetric criteria of RTOG 0915 were established based on superposition/convolution or heterogeneities corrected pencil beam (PB-hete) algorithms for dose calculations. Clinically, more accurate Monte Carlo (MC)-based algorithms are now routinely used for lung stereotactic body radiotherapy (SBRT) dose calculations. Hence, it is important to determine whether MC calculations in the delivery of lung SBRT can achieve RTOG standards. In this report, we evaluate iPlan generated MC plans for peripheral lung cancer patients treated with SBRT using dose-volume histogram (DVH) normalization to determine if the RTOG 0915 compliance criteria can be met. This study evaluated 20 Stage I-II NSCLC patients with peripherally located lung tumors, who underwent MC-based SBRT with heterogeneity correction using X-ray Voxel Monte Carlo (XVMC) algorithm (Brainlab iPlan version 4.1.2). Total dose of 50 to 54 Gy in 3 to 5 fractions was delivered to the planning target vol-ume (PTV) with at least 95% of the PTV receiving 100% of the prescription dose (V100% ≥ 95%). The internal target volume (ITV) was delineated on maximum intensity projection (MIP) images of 4D CT scans. The PTV included the ITV plus 5 mm uniform margin applied to the ITV. The PTV ranged from 11.1 to 163.0 cc (mean = 46.1 ± 38.7 cc). Organs at risk (OARs) including ribs were delineated on mean intensity projection (MeanIP) images of 4D CT scans. Optimal clinical MC SBRT plans were generated using a combination of 3D noncoplanar conformal arcs and nonopposing static beams for the Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5 mm leaf width at isocenter) and 6 MV-SRS (1000 MU/min) beam. All treatment plans were evaluated using the RTOG 0915 high- and intermediate-dose spillage criteria: conformity index (R100%), ratio of 50% isodose volume to the PTV (R50%), maximum dose 2 cm away from PTV in any direction (D2cm), and percent of normal lung receiving 20Gy (V20) or more. Other OAR doses were documented, including the volume of normal lung receiving 5 Gy (V5) or more, dose to < 0.35 cc of spinal cord, and dose to 1000 cc of total normal lung tissue. The dose to < 1 cc, < 5 cc, < 10 cc of ribs, as well as maximum point dose as a function of PTV, prescription dose, and a 3D distance from the tumor isocenter to the proximity of the rib contour were also examined. The biological effective dose (BED) with α/ß ratio of 3 Gy for ribs was analyzed. All 20 patients either fully met or were within the minor deviation dosimetric compliance criteria of RTOG 0915 while using DVH normalization. However, only 5 of the 20 patients fully met all the criteria. Ten of 20 patients had minor deviations in R100% (mean = 1.25 ± 0.09), 13 in R50% (mean = 4.5 ± 0.6), and 11 in D2cm (mean = 61.9 ± 8.5). Lung V20, dose to 1000 cc of normal lung, and dose to < 0.35 cc of spinal cord were met in accordance with RTOG criteria in 95%, 100%, and 100%, respectively, with exception of one patient who exhibited the largest PTV (163 cc) and experienced a minor deviation in lung V20 (mean = 4.7±3.4%). The 3D distance from the tumor isocenter to the proximal rib contour strongly correlated with maximum rib dose. The average values of BED3Gy for maximum point dose and dose to < 1 cc of ribs were higher by a factor of 1.5 using XVMC compared to RTOG 0915 guidelines. The preliminary results for our iPlan XVMC dose analyses indicate that the majority (i.e., 75% of patient population) of our patients had minor deviations when compared to the dosimetric guidelines set by RTOG 0915 protocol. When using an exclusively sophisticated XVMC algorithm and DVH normalization, the RTOG 0915 dosimetric compliance criteria such as R100%, R50%, and D2cm may need to be revised. On average, about 7% for R100%, 13% for R50%, and 14% for D2cm corrections from the mean values were necessary to pass the RTOG 0915 compliance criteria. Another option includes rescaling of the prescription dose. No further adjustment is necessary for OAR dose tolerances including normal lung V20 and total normal lung 1000 cc. Since all the clinical MC plans were generated without compromising the target coverage, rib dose was on the higher side of the protocol guidelines. As expected, larger tumor size and proximity to ribs correlated to higher absolute dose to ribs. These patients will be clinically followed to determine whether delivered MC-computed dose to PTV and the ribs dose correlate with tumor control and severe chest wall pain and/or rib fractures. In order to establish new specific MC-based dose parameters, further dosimetric studies with a large cohort of MC lung SBRT patients will need to be conducted.


Asunto(s)
Algoritmos , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/cirugía , Método de Montecarlo , Radiocirugia , Humanos , Órganos en Riesgo/efectos de la radiación , Simulación de Paciente , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos
5.
Adv Radiat Oncol ; 3(1): 81-86, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29556585

RESUMEN

PURPOSE: The treatment of apical lung tumors with stereotactic body radiation therapy (SBRT) is challenging due to the proximity of the brachial plexus and the concern for nerve damage. METHODS AND MATERIALS: Between June 2009 and February 2017, a total of 75 consecutive patients underwent SBRT for T1-T3N0 non-small cell lung cancer involving the upper lobe of the lung. All patients were treated with 4-dimensional computed tomography (CT)-based image guided SBRT to a dose of 40 to 60 Gy in 3 to 5 fractions. For dosimetric analysis, only apical tumors as defined by the location of the tumor epicenter superior to the aortic arch were included. The anatomical brachial plexus was delineated using the Radiation Therapy Oncology Group atlas. RESULTS: Thirty-one patients with 31 apical lung tumors satisfied the anatomical criteria for inclusion. The median age was 73 years (range, 58-89). The median planning target volume was 26.5 cc (range, 8.2-81.4 cc). The median brachial plexus, brachial plexus maximum dose (Dmax), Dmax per fraction, V22 (cc, 3-4 fractions), V30 (cc, 5 fractions), and biologically effective dose 3 Gy were 15.8 Gy (range, 1.7-66.5 Gy), 3.4 Gy (range, 0.6-14.7 Gy), 0.0 cc (range, 0-0.9 cc), 0.06 cc (range, 0-2.5 cc), and 31.5 Gy (range, 3.3-133.1 Gy), respectively. At a median follow-up of 17 months, the observed incidence of brachial plexopathy was 0%. CONCLUSIONS: There is significant variation in dose to the brachial plexus for patients treated with SBRT for apical lung tumors. Although the incidence of neuropathic symptoms in this series was zero, further attention should be focused on the clinical implications of these findings.

6.
Med Dosim ; 42(4): 375-383, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28822604

RESUMEN

A prospective clinical trial, Radiation Therapy Oncology Group (RTOG) 0933, has demonstrated that whole brain radiotherapy (WBRT) using conformal radiation delivery technique with hippocampal avoidance is associated with less memory complications. Further sparing of other organs at risk (OARs) including the scalp, ear canals, cochleae, and parotid glands could be associated with reductions in additional toxicities for patients treated with WBRT. We investigated the feasibility of WBRT using volumetric-modulated arc therapy (VMAT) to spare the hippocampi and the aforementioned OARs. Ten patients previously treated with nonconformal WBRT (NC-WBRT) using opposed lateral beams were retrospectively re-planned using VMAT with hippocampal sparing according to the RTOG 0933 protocol. The OARs (scalp, auditory canals, cochleae, and parotid glands) were considered as dose-constrained structures. VMAT plans were generated for a prescription dose of 30 Gy in 10 fractions. Comparison of the dosimetric parameters achieved by VMAT and NC-WBRT plans was performed using paired t-tests using upper bound p-value of < 0.001. Average beam on time and monitor units (MUs) delivered to the patients on VMAT were compared with those obtained with NC-WBRT. All VMAT plans met RTOG 0933 dosimetric criteria including the dose to hippocampi of 100% of the volume (D100%) of 8.4 ± 0.3 Gy and maximum dose of 15.6 ± 0.4 Gy, respectively. A statistically significant dose reduction (p < 0.001) to all OARs was achieved. The mean and maximum scalp doses were reduced by an average of 9 Gy (32%) and 2 Gy (6%), respectively. The mean and maximum doses to the auditory canals were reduced from 29.5 ± 0.5 Gy and 31.0 ± 0.4 Gy with NC-WBRT, to 21.8 ± 1.6 Gy (26%) and 27.4 ± 1.4 Gy (12%) with VMAT. VMAT also reduced mean and maximum doses to the cochlea by an average of 4 Gy (13%) and 2 Gy (6%), respectively. The parotid glands mean and maximum doses with VMAT were 4.4 ± 1.9 Gy and 15.7 ± 5.0 Gy, compared to 12.8 ± 4.9 Gy and 30.6 ± 0.5 Gy with NC-WBRT, respectively. The average dose reduction of mean and maximum of parotid glands from VMAT were 65% and 50%, respectively. The average beam on time and MUs were 2.3minutes and 719 on VMAT, and 0.7 minutes and 350 on NC-WBRT. This study demonstrated the feasibility of WBRT using VMAT to not only spare the hippocampi, but also significantly reduce dose to OARs. These advantages of VMAT could potentially decrease the toxicities associated with NC-WBRT and improve patients' quality of life, especially for patients with favorable prognosis receiving WBRT or patients receiving prophylactic cranial irradiation (PCI).


Asunto(s)
Irradiación Craneana/métodos , Hipocampo/efectos de la radiación , Radioterapia de Intensidad Modulada/métodos , Humanos , Órganos en Riesgo , Glándula Parótida/efectos de la radiación , Estudios Prospectivos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
7.
Med Dosim ; 42(1): 69-75, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28129972

RESUMEN

To retrospectively evaluate quality, efficiency, and delivery accuracy of volumetric-modulated arc therapy (VMAT) plans for single-fraction treatment of thoracic vertebral metastases using image-guided stereotactic body radiosurgery (SBRS) after RTOG 0631 dosimetric compliance criteria. After obtaining credentialing for MD Anderson spine phantom irradiation validation, 10 previously treated patients with thoracic vertebral metastases with noncoplanar hybrid arcs using 1 to 2 3D-conformal partial arcs plus 7 to 9 intensity-modulated radiation therapy beams were retrospectively re-optimized with VMAT using 3 full coplanar arcs. Tumors were located between T2 and T12. Contrast-enhanced T1/T2-weighted magnetic resonance images were coregistered with planning computed tomography and planning target volumes (PTV) were between 14.4 and 230.1cc (median = 38.0cc). Prescription dose was 16Gy in 1 fraction with 6MV beams at Novalis-TX linear accelerator consisting of micro multileaf collimators. Each plan was assessed for target coverage using conformality index, the conformation number, the ratio of the volume receiving 50% of the prescription dose over PTV, R50%, homogeneity index (HI), and PTV_1600 coverage per RTOG 0631 requirements. Organs-at-risk doses were evaluated for maximum doses to spinal cord (D0.03cc, D0.35cc), partial spinal cord (D10%), esophagus (D0.03cc and D5cc), heart (D0.03cc and D15cc), and lung (V5, V10, and maximum dose to 1000cc of lung). Dose delivery efficiency and accuracy of each VMAT-SBRS plan were assessed using quality assurance (QA) plan on MapCHECK device. Total beam-on time was recorded during QA procedure, and a clinical gamma index (2%/2mm and 3%/3mm) was used to compare agreement between planned and measured doses. All 10 VMAT-SBRS plans met RTOG 0631 dosimetric requirements for PTV coverage. The plans demonstrated highly conformal and homogenous coverage of the vertebral PTV with mean HI, conformality index, conformation number, and R50% values of 0.13 ± 0.03 (range: 0.09 to 0.18), 1.03 ± 0.04 (range: 0.98 to 1.09), 0.81 ± 0.06 (range: 0.72 to 0.89), and 4.2 ± 0.94 (range: 2.7 to 5.4), respectively. All 10 patients met protocol guidelines with maximum dose to spinal cord (average: 8.83 ± 1.9Gy, range: 5.9 to 10.9Gy); dose to 0.35cc of spinal cord (average: 7.62 ± 1.7Gy, range: 5.4 to 9.6Gy); and dose to 10% of partial spinal cord (average 6.31 ± 1.5Gy, range: 3.5 to 8.5Gy) less than 14, 10, and 10Gy, respectively. For all 10 patients, the maximum dose to esophagus (average: 9.41 ± 4.3Gy, range: 1.5 to 14.9Gy) and dose to 5cc of esophagus (average: 7.43 ± 3.8Gy, range: 1.1 to 11.8Gy) were kept less than protocol requirements 16Gy and 11.9Gy, respectively. In a similar manner, all 10 patients met protocol compliance criteria with maximum dose to heart (average: 4.62 ± 3.5Gy, range: 1.3 to 10.2Gy) and dose to 15cc of heart (average: 2.23 ± 1.8Gy, range: 0.3 to 5.6Gy) less than 22 and 16Gy, respectively. The dose to the lung was retained much lower than protocol guidelines for all 10 patients. The total number of monitor units was, on average, 6919 ± 1187. The average beam-on time was 11.5 ± 2.0 minutes. The VMAT plans demonstrated dose delivery accuracy of 95.8 ± 0.7%, on average, for clinical gamma passing rate with 2%/2mm criteria and 98.3 ± 0.8%, on average, with 3%/3mm criteria. All VMAT-SBRS plans were considered clinically acceptable per RTOG 0631 dosimetric compliance criteria. VMAT planning provided highly conformal and homogenous dose distributions for the lower-dose vertebral PTV and the spinal cord as well as organs-at-risk such as esophagus, heart, and lung. Higher QA pass rates and shorter beam-on time suggest that VMAT-SBRS is a clinically feasible, fast, and effective treatment option for patients with thoracic vertebral metastases.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Neoplasias de la Columna Vertebral/radioterapia , Vértebras Torácicas , Adhesión a Directriz , Humanos , Dosis de Radiación , Estudios Retrospectivos , Neoplasias de la Columna Vertebral/secundario
8.
Med Dosim ; 41(4): 315-322, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27692518

RESUMEN

PURPOSE: To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). MATERIALS AND METHODS: A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured on T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30Gy for WB-PTV and 45Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. RESULTS: All 5 HS-WBRT with SIB plans met WB-PTV D2%, D98%, and V30Gy NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5 hippocampal sparing patients met protocol guidelines with maximum dose and dose to 100% of hippocampus (D100%) less than 16 and 9Gy, respectively. The dose to the optic apparatus was kept below protocol guidelines for all 5 patients. Highly conformal and homogenous radiosurgical dose distributions were achieved for all 5 patients with a total of 33 brain metastases. The m-BM PTVs had a mean HI = 0.09 ± 0.02 (range: 0.07 to 0.19) and a mean CI = 1.02 ± 0.06 (range: 0.93 to 1.2). The total number of monitor units (MU) was, on average, 1677 ± 166. The average beam-on time was 4.1 ± 0.4 minute . The IMAT plans demonstrated accurate dose delivery of 95.2 ± 0.6%, on average, for clinical gamma passing rate with 2%/2-mm criteria and 98.5 ± 0.9%, on average, with 3%/3-mm criteria. CONCLUSIONS: All hippocampal sparing plans were considered clinically acceptable per NRG-CC001 dosimetric compliance criteria. IMAT planning provided highly conformal and homogenous dose distributions for the WB-PTV and m-BM PTVs with lower doses to OAR such as the hippocampus. These results suggest that HS-WBRT with SIB is a clinically feasible, fast, and effective treatment option for patients with a relatively large numbers of m-BM lesions.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Irradiación Craneana/métodos , Hipocampo/efectos de la radiación , Tratamientos Conservadores del Órgano , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Dosificación Radioterapéutica , Estudios Retrospectivos
9.
Otolaryngol Head Neck Surg ; 148(1): 64-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22951428

RESUMEN

OBJECTIVE: Concurrent chemoradiotherapy (CCRT) has become the treatment of choice for oropharyngeal and hypopharyngolaryngeal cancers in many centers. Although it has increased the rates of organ preservation, there has also been an increase in treatment-related complications. We aimed to evaluate the functional outcomes of CCRT in head and neck cancer. STUDY DESIGN: Case series with chart review. SETTING: Tertiary cancer center. SUBJECTS AND METHODS: A retrospective study of patients treated with CCRT at the University of Arkansas for Medical Sciences was performed. Demographic data and treatment outcomes were extracted, specifically feeding tube and tracheotomy dependence and number of esophageal dilatations. RESULTS: Of the 243 patients treated with concurrent chemoradiotherapy (5-fluorouracil + cysplatin and radiotherapy), 152 patients received a feeding tube. The median percutaneous gastrostomy tube (PEG) use was 9 months (range, 1-96 months). More than 70% of the patients who had a PEG more than 6 months had a T3 or T4 tumor. Thirty-seven patients underwent esophageal dilatations, (median, 1; range, 1-7). The median use of a tracheotomy was 7 months, and 77% of these patients were treated for hypopharyngolaryngeal cancer. CONCLUSIONS: Despite major improvement in locoregional control rates, CCRT has a significant negative impact on the functional outcomes of head and neck cancer patients, with a high number of patients remaining PEG and tracheotomy dependent.


Asunto(s)
Quimioradioterapia/efectos adversos , Gastrostomía/estadística & datos numéricos , Neoplasias Hipofaríngeas/terapia , Neoplasias Orofaríngeas/terapia , Calidad de Vida , Traqueotomía/estadística & datos numéricos , Instituciones Oncológicas , Quimioradioterapia/métodos , Estudios de Cohortes , Nutrición Enteral/métodos , Femenino , Estudios de Seguimiento , Neoplasias de Cabeza y Cuello/mortalidad , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/cirugía , Neoplasias de Cabeza y Cuello/terapia , Humanos , Neoplasias Hipofaríngeas/mortalidad , Neoplasias Hipofaríngeas/patología , Neoplasias Hipofaríngeas/cirugía , Masculino , Disección del Cuello/efectos adversos , Disección del Cuello/métodos , Neoplasias Orofaríngeas/mortalidad , Neoplasias Orofaríngeas/patología , Neoplasias Orofaríngeas/cirugía , Recuperación de la Función , Estudios Retrospectivos , Medición de Riesgo , Análisis de Supervivencia , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA