Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(2): 321-337.e10, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625050

RESUMEN

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Asunto(s)
Bases de Datos Genéticas , Neoplasias/patología , Transducción de Señal/genética , Genes Relacionados con las Neoplasias , Humanos , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
2.
Cell ; 170(1): 17-33, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666118

RESUMEN

RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies, and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathways that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.


Asunto(s)
Proteínas ras/metabolismo , Animales , Membrana Celular/metabolismo , Anomalías Congénitas/metabolismo , Humanos , Trastornos Mentales/metabolismo , Mutación , Neoplasias/metabolismo , Filogenia , Transducción de Señal , Levaduras , Proteínas ras/química , Proteínas ras/genética
3.
Cell ; 163(5): 1237-1251, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26590425

RESUMEN

K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Superficie Celular/metabolismo , Vía de Señalización Wnt , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Calmodulina/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Genes ras , Humanos , Ratones , Datos de Secuencia Molecular , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Papiloma/metabolismo , Ésteres del Forbol/administración & dosificación , Fosforilación , Unión Proteica/efectos de los fármacos
4.
Mol Cell ; 82(13): 2443-2457.e7, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35613620

RESUMEN

RAF protein kinases are effectors of the GTP-bound form of small guanosine triphosphatase RAS and function by phosphorylating MEK. We showed here that the expression of ARAF activated RAS in a kinase-independent manner. Binding of ARAF to RAS displaced the GTPase-activating protein NF1 and antagonized NF1-mediated inhibition of RAS. This reduced ERK-dependent inhibition of RAS and increased RAS-GTP. By this mechanism, ARAF regulated the duration and consequences of RTK-induced RAS activation and supported the RAS output of RTK-dependent tumor cells. In human lung cancers with EGFR mutation, amplification of ARAF was associated with acquired resistance to EGFR inhibitors, which was overcome by combining EGFR inhibitors with an inhibitor of the protein tyrosine phosphatase SHP2 to enhance inhibition of nucleotide exchange and RAS activation.


Asunto(s)
Neurofibromina 1 , Proteínas Proto-Oncogénicas A-raf , Proteínas Activadoras de ras GTPasa , Receptores ErbB/genética , Receptores ErbB/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Neurofibromina 1/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas A-raf/metabolismo , Transducción de Señal , Proteínas Activadoras de ras GTPasa/metabolismo
5.
Nature ; 609(7926): 408-415, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35831509

RESUMEN

Receptor tyrosine kinase (RTK)-RAS signalling through the downstream mitogen-activated protein kinase (MAPK) cascade regulates cell proliferation and survival. The SHOC2-MRAS-PP1C holophosphatase complex functions as a key regulator of RTK-RAS signalling by removing an inhibitory phosphorylation event on the RAF family of proteins to potentiate MAPK signalling1. SHOC2 forms a ternary complex with MRAS and PP1C, and human germline gain-of-function mutations in this complex result in congenital RASopathy syndromes2-5. However, the structure and assembly of this complex are poorly understood. Here we use cryo-electron microscopy to resolve the structure of the SHOC2-MRAS-PP1C complex. We define the biophysical principles of holoenzyme interactions, elucidate the assembly order of the complex, and systematically interrogate the functional consequence of nearly all of the possible missense variants of SHOC2 through deep mutational scanning. We show that SHOC2 binds PP1C and MRAS through the concave surface of the leucine-rich repeat region and further engages PP1C through the N-terminal disordered region that contains a cryptic RVXF motif. Complex formation is initially mediated by interactions between SHOC2 and PP1C and is stabilized by the binding of GTP-loaded MRAS. These observations explain how mutant versions of SHOC2 in RASopathies and cancer stabilize the interactions of complex members to enhance holophosphatase activity. Together, this integrative structure-function model comprehensively defines key binding interactions within the SHOC2-MRAS-PP1C holophosphatase complex and will inform therapeutic development .


Asunto(s)
Microscopía por Crioelectrón , Péptidos y Proteínas de Señalización Intracelular , Complejos Multiproteicos , Proteína Fosfatasa 1 , Proteínas ras , Secuencias de Aminoácidos , Sitios de Unión , Guanosina Trifosfato/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Mutación Missense , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/ultraestructura , Estabilidad Proteica , Quinasas raf , Proteínas ras/química , Proteínas ras/metabolismo , Proteínas ras/ultraestructura
6.
Genes Dev ; 34(21-22): 1410-1421, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33872193

RESUMEN

The roles of SPRED proteins in signaling, development, and cancer are becoming increasingly recognized. SPRED proteins comprise an N-terminal EVH-1 domain, a central c-Kit-binding domain, and C-terminal SROUTY domain. They negatively regulate signaling from tyrosine kinases to the Ras-MAPK pathway. SPRED1 binds directly to both c-KIT and to the RasGAP, neurofibromin, whose function is completely dependent on this interaction. Loss-of-function mutations in SPRED1 occur in human cancers and cause the developmental disorder, Legius syndrome. Genetic ablation of SPRED genes in mice leads to behavioral problems, dwarfism, and multiple other phenotypes including increased risk of leukemia. In this review, we summarize and discuss biochemical, structural, and biological functions of these proteins including their roles in normal cell growth and differentiation and in human disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Crecimiento y Desarrollo/fisiología , Neoplasias/metabolismo , Transducción de Señal/fisiología , Animales , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Crecimiento y Desarrollo/genética , Humanos , Neoplasias/genética , Dominios Proteicos , Transducción de Señal/genética
7.
Proc Natl Acad Sci U S A ; 120(5): e2208960120, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36689660

RESUMEN

The majority of pathogenic mutations in the neurofibromatosis type I (NF1) gene reduce total neurofibromin protein expression through premature truncation or microdeletion, but it is less well understood how loss-of-function missense variants drive NF1 disease. We have found that patient variants in codons 844 to 848, which correlate with a severe phenotype, cause protein instability and exert an additional dominant-negative action whereby wild-type neurofibromin also becomes destabilized through protein dimerization. We have used our neurofibromin cryogenic electron microscopy structure to predict and validate other patient variants that act through a similar mechanism. This provides a foundation for understanding genotype-phenotype correlations and has important implications for patient counseling, disease management, and therapeutics.


Asunto(s)
Neurofibromatosis 1 , Neurofibromina 1 , Humanos , Neurofibromina 1/metabolismo , Neurofibromatosis 1/genética , Dimerización , Mutación , Mutación Missense
8.
J Biol Chem ; 300(2): 105650, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237681

RESUMEN

Individual oncogenic KRAS mutants confer distinct differences in biochemical properties and signaling for reasons that are not well understood. KRAS activity is closely coupled to protein dynamics and is regulated through two interconverting conformations: state 1 (inactive, effector binding deficient) and state 2 (active, effector binding enabled). Here, we use 31P NMR to delineate the differences in state 1 and state 2 populations present in WT and common KRAS oncogenic mutants (G12C, G12D, G12V, G13D, and Q61L) bound to its natural substrate GTP or a commonly used nonhydrolyzable analog GppNHp (guanosine-5'-[(ß,γ)-imido] triphosphate). Our results show that GppNHp-bound proteins exhibit significant state 1 population, whereas GTP-bound KRAS is primarily (90% or more) in state 2 conformation. This observation suggests that the predominance of state 1 shown here and in other studies is related to GppNHp and is most likely nonexistent in cells. We characterize the impact of this differential conformational equilibrium of oncogenic KRAS on RAF1 kinase effector RAS-binding domain and intrinsic hydrolysis. Through a KRAS G12C drug discovery, we have identified a novel small-molecule inhibitor, BBO-8956, which is effective against both GDP- and GTP-bound KRAS G12C. We show that binding of this inhibitor significantly perturbs state 1-state 2 equilibrium and induces an inactive state 1 conformation in GTP-bound KRAS G12C. In the presence of BBO-8956, RAF1-RAS-binding domain is unable to induce a signaling competent state 2 conformation within the ternary complex, demonstrating the mechanism of action for this novel and active-conformation inhibitor.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas ras/metabolismo , Guanosina Trifosfato/metabolismo , Espectroscopía de Resonancia Magnética , Transducción de Señal , Mutación
9.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091470

RESUMEN

RAF inhibitors unexpectedly induce ERK signaling in normal and tumor cells with elevated RAS activity. Paradoxical activation is believed to be RAS dependent. In this study, we showed that LY3009120, a pan-RAF inhibitor, can unexpectedly cause paradoxical ERK activation in KRASG12C-dependent lung cancer cell lines, when KRAS is inhibited by ARS1620, a KRASG12C inhibitor. Using H/N/KRAS-less mouse embryonic fibroblasts, we discovered that classical RAS proteins are not essential for RAF inhibitor-induced paradoxical ERK signaling. In their absence, RAF inhibitors can induce ERK phosphorylation, ERK target gene transcription, and cell proliferation. We further showed that the MRAS/SHOC2 complex is required for this process. This study highlights the complexity of the allosteric RAF regulation by RAF inhibitors, and the importance of other RAS-related proteins in this process.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Quinasas raf/antagonistas & inhibidores , Proteínas ras/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fibroblastos , Péptidos y Proteínas de Señalización Intracelular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Mutación/efectos de los fármacos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasas raf/metabolismo , Proteínas ras/fisiología
10.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983849

RESUMEN

RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.


Asunto(s)
Membrana Celular/enzimología , Lípidos/química , Aprendizaje Automático , Simulación de Dinámica Molecular , Multimerización de Proteína , Proteínas Proto-Oncogénicas p21(ras)/química , Transducción de Señal , Humanos
11.
J Biol Chem ; 299(6): 104789, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149146

RESUMEN

Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-Mitogen-Activated Protein Kinase (MAPK) pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes; thus, we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2 but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates the interaction between amino acids 123 to 201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. We found that the formation of this interaction is regulated by MAPK signaling events. We also find that this interaction between SPRED2 and RSK2 has functional consequences, whereby the knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. We report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Proteínas Represoras , Proteínas Quinasas S6 Ribosómicas 90-kDa , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/genética , Humanos , Línea Celular , Dominios Proteicos , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Técnicas de Silenciamiento del Gen , Transporte de Proteínas/genética , Unión Proteica , Estructura Terciaria de Proteína , Modelos Moleculares , Neurofibromina 1/metabolismo
12.
Anal Chem ; 96(13): 5223-5231, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498381

RESUMEN

Development of new targeted inhibitors for oncogenic KRAS mutants may benefit from insight into how a given mutation influences the accessibility of protein residues and how compounds interact with mutant or wild-type KRAS proteins. Targeted proteomic analysis, a key validation step in the KRAS inhibitor development process, typically involves both intact mass- and peptide-based methods to confirm compound localization or quantify binding. However, these methods may not always provide a clear picture of the compound binding affinity for KRAS, how specific the compound is to the target KRAS residue, and how experimental conditions may impact these factors. To address this, we have developed a novel top-down proteomic assay to evaluate in vitro KRAS4B-compound engagement while assessing relative quantitation in parallel. We present two applications to demonstrate the capabilities of our assay: maleimide-biotin labeling of a KRAS4BG12D cysteine mutant panel and treatment of three KRAS4B proteins (WT, G12C, and G13C) with small molecule compounds. Our results show the time- or concentration-dependence of KRAS4B-compound engagement in context of the intact protein molecule while directly mapping the compound binding site.


Asunto(s)
Proteómica , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Sitios de Unión
13.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34380736

RESUMEN

RAS proteins are molecular switches that interact with effector proteins when bound to guanosine triphosphate, stimulating downstream signaling in response to multiple stimuli. Although several canonical downstream effectors have been extensively studied and tested as potential targets for RAS-driven cancers, many of these remain poorly characterized. In this study, we undertook a biochemical and structural approach to further study the role of Sin1 as a RAS effector. Sin1 interacted predominantly with KRAS isoform 4A in cells through an atypical RAS-binding domain that we have characterized by X-ray crystallography. Despite the essential role of Sin1 in the assembly and activity of mTORC2, we find that the interaction with RAS is not required for these functions. Cells and mice expressing a mutant of Sin1 that is unable to bind RAS are proficient for activation and assembly of mTORC2. Our results suggest that Sin1 is a bona fide RAS effector that regulates downstream signaling in an mTORC2-independent manner.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Espectrometría de Masas , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Modelos Moleculares , Conformación Proteica , Isoformas de Proteínas , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
14.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34330832

RESUMEN

UDP-glucose pyrophosphorylase 2 (UGP2), the enzyme that synthesizes uridine diphosphate (UDP)-glucose, rests at the convergence of multiple metabolic pathways, however, the role of UGP2 in tumor maintenance and cancer metabolism remains unclear. Here, we identify an important role for UGP2 in the maintenance of pancreatic ductal adenocarcinoma (PDAC) growth in both in vitro and in vivo tumor models. We found that transcription of UGP2 is directly regulated by the Yes-associated protein 1 (YAP)-TEA domain transcription factor (TEAD) complex, identifying UGP2 as a bona fide YAP target gene. Loss of UGP2 leads to decreased intracellular glycogen levels and defects in N-glycosylation targets that are important for the survival of PDACs, including the epidermal growth factor receptor (EGFR). These critical roles of UGP2 in cancer maintenance, metabolism, and protein glycosylation may offer insights into therapeutic options for otherwise intractable PDACs.


Asunto(s)
Carcinoma Ductal Pancreático/enzimología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Glucógeno/biosíntesis , Neoplasias Pancreáticas/enzimología , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Glicosilación , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales , Neoplasias Pancreáticas/patología , Factores de Transcripción de Dominio TEA/genética , Factores de Transcripción de Dominio TEA/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo
15.
Bioscience ; 73(7): 479-493, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37841229

RESUMEN

Biodiversity collections are experiencing a renaissance fueled by the intersection of informatics, emerging technologies, and the extended use and interpretation of specimens and archived databases. In this article, we explore the potential for transformative research in ecology integrating biodiversity collections, stable isotope analysis (SIA), and environmental informatics. Like genomic DNA, SIA provides a common currency interpreted in the context of biogeochemical principles. Integration of SIA data across collections allows for evaluation of long-term ecological change at local to continental scales. Challenges including the analysis of sparse samples, a lack of information about baseline isotopic composition, and the effects of preservation remain, but none of these challenges is insurmountable. The proposed research framework interfaces with existing databases and observatories to provide benchmarks for retrospective studies and ecological forecasting. Collections and SIA add historical context to fundamental questions in freshwater ecological research, reference points for ecosystem monitoring, and a means of quantitative assessment for ecosystem restoration.

16.
Nature ; 551(7679): 247-250, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29088702

RESUMEN

Acquired drug resistance prevents cancer therapies from achieving stable and complete responses. Emerging evidence implicates a key role for non-mutational drug resistance mechanisms underlying the survival of residual cancer 'persister' cells. The persister cell pool constitutes a reservoir from which drug-resistant tumours may emerge. Targeting persister cells therefore presents a therapeutic opportunity to impede tumour relapse. We previously found that cancer cells in a high mesenchymal therapy-resistant cell state are dependent on the lipid hydroperoxidase GPX4 for survival. Here we show that a similar therapy-resistant cell state underlies the behaviour of persister cells derived from a wide range of cancers and drug treatments. Consequently, we demonstrate that persister cells acquire a dependency on GPX4. Loss of GPX4 function results in selective persister cell ferroptotic death in vitro and prevents tumour relapse in mice. These findings suggest that targeting of GPX4 may represent a therapeutic strategy to prevent acquired drug resistance.


Asunto(s)
Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Glutatión Peroxidasa/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Antioxidantes/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Hierro/metabolismo , Masculino , Mesodermo/efectos de los fármacos , Mesodermo/enzimología , Mesodermo/patología , Ratones , Terapia Molecular Dirigida , Neoplasias/enzimología , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Recurrencia , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Proc Natl Acad Sci U S A ; 117(22): 12121-12130, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32424096

RESUMEN

HRAS, NRAS, and KRAS4A/KRAS4B comprise the RAS family of small GTPases that regulate signaling pathways controlling cell proliferation, differentiation, and survival. RAS pathway abnormalities cause developmental disorders and cancers. We found that KRAS4B colocalizes on the cell membrane with other RAS isoforms and a subset of prenylated small GTPase family members using a live-cell quantitative split luciferase complementation assay. RAS protein coclustering is mainly mediated by membrane association-facilitated interactions (MAFIs). Using the RAS-RBD (CRAF RAS binding domain) interaction as a model system, we showed that MAFI alone is not sufficient to induce RBD-mediated RAS inhibition. Surprisingly, we discovered that high-affinity membrane-targeted RAS binding proteins inhibit RAS activity and deplete RAS proteins through an autophagosome-lysosome-mediated degradation pathway. Our results provide a mechanism for regulating RAS activity and protein levels, a more detailed understanding of which should lead to therapeutic strategies for inhibiting and depleting oncogenic RAS proteins.


Asunto(s)
Autofagosomas/metabolismo , Membrana Celular/metabolismo , Lisosomas/metabolismo , Proteínas ras/metabolismo , Humanos , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas , Transducción de Señal
18.
Proc Natl Acad Sci U S A ; 117(39): 24258-24268, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32913056

RESUMEN

The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling. We combined multiple biophysical measurements and computational methodologies to generate a consensus model for authentically processed, membrane-anchored KRAS. In contrast to the two membrane-proximal conformations previously reported, we identify a third significantly populated state using a combination of neutron reflectivity, fast photochemical oxidation of proteins (FPOP), and NMR. In this highly populated state, which we refer to as "membrane-distal" and estimate to comprise ∼90% of the ensemble, the G-domain does not directly contact the membrane but is tethered via its C-terminal hypervariable region and carboxymethylated farnesyl moiety, as shown by FPOP. Subsequent interaction of the RAF1 RAS binding domain with KRAS does not significantly change G-domain configurations on the membrane but affects their relative populations. Overall, our results are consistent with a directional fly-casting mechanism for KRAS, in which the membrane-distal state of the G-domain can effectively recruit RAF kinase from the cytoplasm for activation at the membrane.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Quinasas raf/metabolismo , Membrana Celular/metabolismo , Simulación de Dinámica Molecular
19.
J Biol Chem ; 296: 100023, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33410398

RESUMEN

Interactions between proteins are fundamental for every biological process and especially important in cell signaling pathways. Biochemical techniques that evaluate these protein-protein interactions (PPIs), such as in vitro pull downs and coimmunoprecipitations, have become popular in most laboratories and are essential to identify and validate novel protein binding partners. Most PPIs occur through small domains or motifs, which are challenging and laborious to map by using standard biochemical approaches because they generally require the cloning of several truncation mutants. Moreover, these classical methodologies provide limited resolution of the interacting interface. Here, we describe the development of an alternative technique to overcome these limitations termed "Protein Domain mapping using Yeast 2 Hybrid-Next Generation Sequencing" (DoMY-Seq), which leverages both yeast two-hybrid and next-generation sequencing techniques. In brief, our approach involves creating a library of fragments derived from an open reading frame of interest and enriching for the interacting fragments using a yeast two-hybrid reporter system. Next-generation sequencing is then subsequently employed to read and map the sequence of the interacting fragment, yielding a high-resolution plot of the binding interface. We optimized DoMY-Seq by taking advantage of the well-described and high-affinity interaction between KRAS and CRAF, and we provide high-resolution domain mapping on this and other protein-interacting pairs, including CRAF-MEK1, RIT1-RGL3, and p53-MDM2. Thus, DoMY-Seq provides an unbiased alternative method to rapidly identify the domains involved in PPIs by advancing the use of yeast two-hybrid technology.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas/metabolismo , Técnicas del Sistema de Dos Híbridos , Secuencia de Aminoácidos , Sistemas de Lectura Abierta , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
20.
J Am Chem Soc ; 144(9): 4196-4205, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35213144

RESUMEN

KRAS is the most frequently mutated RAS protein in cancer patients, and it is estimated that about 20% of the cancer patients in the United States carried mutant RAS proteins. To accelerate therapeutic development, structures and dynamics of RAS proteins had been extensively studied by various biophysical techniques for decades. Although 31P NMR studies revealed population equilibrium of the two major states in the active GMPPNP-bound form, more complex conformational dynamics in RAS proteins and oncogenic mutants subtly modulate the interactions with their downstream effectors. We established a set of customized NMR relaxation dispersion techniques to efficiently and systematically examine the ms-µs conformational dynamics of RAS proteins. This method allowed us to observe varying synchronized motions that connect the effector and allosteric lobes in KRAS. We demonstrated the role of conformational dynamics of KRAS in controlling its interaction with the Ras-binding domain of the downstream effector RAF1, the first kinase in the MAPK pathway. This allows one to explain, as well as to predict, the altered binding affinities of various KRAS mutants, which was neither previously reported nor apparent from the structural perspective.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Fenómenos Fisiológicos Celulares , Humanos , Conformación Molecular , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas ras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA