Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260386

RESUMEN

Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.


Asunto(s)
Fabaceae/fisiología , Pradera , Internacionalidad , Nitrógeno/farmacología , Fósforo/farmacología , Biodiversidad , Biomasa , Fabaceae/efectos de los fármacos , Probabilidad
2.
Nature ; 537(7618): 93-96, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27556951

RESUMEN

Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.


Asunto(s)
Biodiversidad , Fertilizantes , Pradera , Plantas/clasificación , Plantas/metabolismo , Biomasa , Alimentos , Luz , Plantas/efectos de la radiación , Poaceae/clasificación , Poaceae/efectos de los fármacos , Poaceae/crecimiento & desarrollo , Poaceae/efectos de la radiación
3.
Proc Natl Acad Sci U S A ; 116(36): 17867-17873, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427510

RESUMEN

Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Teorema de Bayes , Cambio Climático , Actividades Humanas , Humanos
4.
Ecol Lett ; 24(9): 1892-1904, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34170615

RESUMEN

Global change is impacting plant community composition, but the mechanisms underlying these changes are unclear. Using a dataset of 58 global change experiments, we tested the five fundamental mechanisms of community change: changes in evenness and richness, reordering, species gains and losses. We found 71% of communities were impacted by global change treatments, and 88% of communities that were exposed to two or more global change drivers were impacted. Further, all mechanisms of change were equally likely to be affected by global change treatments-species losses and changes in richness were just as common as species gains and reordering. We also found no evidence of a progression of community changes, for example, reordering and changes in evenness did not precede species gains and losses. We demonstrate that all processes underlying plant community composition changes are equally affected by treatments and often occur simultaneously, necessitating a wholistic approach to quantifying community changes.


Asunto(s)
Biodiversidad , Ecosistema , Plantas
5.
Glob Chang Biol ; 26(4): 2060-2071, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32012421

RESUMEN

Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.

6.
Glob Chang Biol ; 26(12): 7173-7185, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32786128

RESUMEN

Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin ), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net Nmin . Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.


Asunto(s)
Nitrógeno , Suelo , Animales , Ecosistema , Fertilización , Pradera , Herbivoria , Humanos , Nitrógeno/análisis
7.
Glob Chang Biol ; 26(8): 4572-4582, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32520438

RESUMEN

Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.


Asunto(s)
Ecosistema , Pradera , Carbono , Nitrógeno/análisis , Nutrientes , Suelo
8.
Oecologia ; 194(4): 529-539, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32725300

RESUMEN

Species distributions are dependent on interactions with abiotic and biotic factors in the environment. Abiotic factors like temperature, moisture, and soil nutrients, along with biotic interactions within and between species, can all have strong influences on spatial distributions of plants and animals. Terrestrial Antarctic habitats are relatively simple and thus good systems to study ecological factors that drive species distributions and abundance. However, these environments are also sensitive to perturbation, and thus understanding the ecological drivers of species distribution is critical for predicting responses to environmental change. The Antarctic midge, Belgica antarctica, is the only endemic insect on the continent and has a patchy distribution along the Antarctic Peninsula. While its life history and physiology are well studied, factors that underlie variation in population density within its range are unknown. Previous work on Antarctic microfauna indicates that distribution over broad scales is primarily regulated by soil moisture, nitrogen content, and the presence of suitable plant life, but whether these patterns are true over smaller spatial scales has not been investigated. Here we sampled midges across five islands on the Antarctic Peninsula and tested a series of hypotheses to determine the relative influences of abiotic and biotic factors on midge abundance. While historical literature suggests that Antarctic organisms are limited by the abiotic environment, our best-supported hypothesis indicated that abundance is predicted by a combination of abiotic and biotic conditions. Our results are consistent with a growing body of literature that biotic interactions are more important in Antarctic ecosystems than historically appreciated.


Asunto(s)
Ecosistema , Suelo , Animales , Regiones Antárticas , Islas , Plantas
9.
Nature ; 508(7497): 521-5, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24531763

RESUMEN

Studies of experimental grassland communities have demonstrated that plant diversity can stabilize productivity through species asynchrony, in which decreases in the biomass of some species are compensated for by increases in others. However, it remains unknown whether these findings are relevant to natural ecosystems, especially those for which species diversity is threatened by anthropogenic global change. Here we analyse diversity-stability relationships from 41 grasslands on five continents and examine how these relationships are affected by chronic fertilization, one of the strongest drivers of species loss globally. Unmanipulated communities with more species had greater species asynchrony, resulting in more stable biomass production, generalizing a result from biodiversity experiments to real-world grasslands. However, fertilization weakened the positive effect of diversity on stability. Contrary to expectations, this was not due to species loss after eutrophication but rather to an increase in the temporal variation of productivity in combination with a decrease in species asynchrony in diverse communities. Our results demonstrate separate and synergistic effects of diversity and eutrophication on stability, emphasizing the need to understand how drivers of global change interactively affect the reliable provisioning of ecosystem services in real-world systems.


Asunto(s)
Biodiversidad , Eutrofización , Fertilizantes/efectos adversos , Poaceae , Animales , Biomasa , Clima , Eutrofización/efectos de los fármacos , Geografía , Cooperación Internacional , Poaceae/efectos de los fármacos , Poaceae/fisiología , Factores de Tiempo
10.
Nature ; 508(7497): 517-20, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24670649

RESUMEN

Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.


Asunto(s)
Biodiversidad , Eutrofización/efectos de la radiación , Herbivoria/fisiología , Luz , Plantas/metabolismo , Plantas/efectos de la radiación , Poaceae , Clima , Eutrofización/efectos de los fármacos , Geografía , Actividades Humanas , Internacionalidad , Nitrógeno/metabolismo , Nitrógeno/farmacología , Plantas/efectos de los fármacos , Poaceae/efectos de los fármacos , Poaceae/fisiología , Poaceae/efectos de la radiación , Factores de Tiempo
11.
Ecol Lett ; 21(9): 1364-1371, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29952114

RESUMEN

Environmental change can result in substantial shifts in community composition. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, studies on environmental change typically quantify biotic responses at single spatial (time series within a single plot) or temporal (spatial beta diversity at single time points) scales, ignoring their potential interdependence. Here, we use data from a global network of grassland experiments to determine how turnover responses to two major forms of environmental change - fertilisation and herbivore loss - are affected by species pool size and spatial compositional heterogeneity. Fertilisation led to higher rates of local extinction, whereas turnover in herbivore exclusion plots was driven by species replacement. Overall, sites with more spatially heterogeneous composition showed significantly higher rates of annual turnover, independent of species pool size and treatment. Taking into account spatial biodiversity aspects will therefore improve our understanding of consequences of global and anthropogenic change on community dynamics.


Asunto(s)
Herbivoria , Plantas , Biodiversidad
12.
Ecology ; 99(4): 822-831, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29603733

RESUMEN

Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot-level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water-limited sites.


Asunto(s)
Pradera , Herbivoria , Animales , Biomasa , Ecosistema , Eutrofización , Humanos , Nitrógeno , Nutrientes
13.
Proc Natl Acad Sci U S A ; 112(35): 10967-72, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283343

RESUMEN

Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.


Asunto(s)
Ecosistema , Poaceae/fisiología , Microbiología del Suelo , Archaea/fisiología , Fenómenos Fisiológicos Bacterianos , Hongos/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo
14.
Microb Ecol ; 72(3): 682-91, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27502203

RESUMEN

Cool season grasses host multiple fungal symbionts, such as aboveground Epichloë endophytes and belowground arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSEs). Asexual Epichloë endophytes can influence root colonization by AMF, but the type of interaction-whether antagonistic or beneficial-varies. In Schedonorus arundinaceus (tall fescue), Epichloë coenophiala can negatively affect AMF, which may impact soil properties and ecosystem function. Within field plots of S. arundinaceus that were either E. coenophiala-free (E-), infected with the common, mammal-toxic E. coenophiala strain (CTE+), or infected with one of two novel, non-toxic strains (AR542 NTE+ and AR584 NTE+), we hypothesized that (1) CTE+ would decrease AMF and DSE colonization rates and reduce soil extraradical AMF hyphae compared to E- or NTE+, and (2) this would lead to E- and NTE+ plots having greater water stable soil aggregates and C than CTE+. E. coenophiala presence and strain did not significantly alter AMF or DSE colonization, nor did it affect extraradical AMF hypha length, soil aggregates, or aggregate-associated C and N. Soil extraradical AMF hypha length negatively correlated with root AMF colonization. Our results contrast with previous demonstrations that E. coenophiala symbiosis inhibits belowground AMF communities. In our mesic, relatively nutrient-rich grassland, E. coenophiala symbiosis did not antagonize belowground symbionts, regardless of strain. Manipulating E. coenophiala strains within S. arundinaceus may not significantly alter AMF communities and nutrient cycling, yet we must further explore these relationships under different soils and environmental conditions given that symbiont interactions can be important in determining ecosystem response to global change.


Asunto(s)
Epichloe/fisiología , Hongos/fisiología , Plantas/microbiología , Poaceae/microbiología , Microbiología del Suelo , Suelo/química , Simbiosis , Carbono/metabolismo , Ecosistema , Endófitos/fisiología , Epichloe/patogenicidad , Hongos/crecimiento & desarrollo , Pradera , Hifa/crecimiento & desarrollo , Kentucky , Micorrizas/fisiología , Neotyphodium , Nitrógeno/metabolismo , Raíces de Plantas/microbiología , Agua/química
15.
Microb Ecol ; 72(1): 197-206, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26992401

RESUMEN

Tall fescue (Schedonorus arundinaceus) is a widespread grass that can form a symbiotic relationship with a shoot-specific fungal endophyte (Epichloë coenophiala). While the effects of fungal endophyte infection on fescue physiology and ecology have been relatively well studied, less attention has been given to how this relationship may impact the soil microbial community. We used high-throughput DNA sequencing and phospholipid fatty acid analysis to determine the structure and biomass of microbial communities in both bulk and rhizosphere soils from tall fescue stands that were either uninfected with E. coenophiala or were infected with the common toxic strain or one of several novel strains of the endophyte. We found that rhizosphere and bulk soils harbored distinct microbial communities. Endophyte presence, regardless of strain, significantly influenced soil fungal communities, but endophyte effects were less pronounced in prokaryotic communities. E. coenophiala presence did not change total fungal biomass but caused a shift in soil and rhizosphere fungal community composition, increasing the relative abundance of taxa within the Glomeromycota phylum and decreasing the relative abundance of genera in the Ascomycota phylum, including Lecanicillium, Volutella, Lipomyces, Pochonia, and Rhizoctonia. Our data suggests that tripartite interactions exist between the shoot endophyte E. coenophiala, tall fescue, and soil fungi that may have important implications for the functioning of soils, such as carbon storage, in fescue-dominated grasslands.


Asunto(s)
Endófitos/clasificación , Epichloe/clasificación , Festuca/microbiología , Microbiología del Suelo , Archaea/clasificación , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Quitridiomicetos/clasificación , Quitridiomicetos/aislamiento & purificación , Quitridiomicetos/metabolismo , Endófitos/aislamiento & purificación , Endófitos/metabolismo , Epichloe/aislamiento & purificación , Epichloe/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Suelo/química , Simbiosis
16.
Ecol Lett ; 18(1): 85-95, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25430889

RESUMEN

Aboveground-belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m(2) plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.


Asunto(s)
Biodiversidad , Pradera , Plantas , Microbiología del Suelo , Archaea/clasificación , Bacterias/genética , Biota , Hongos/genética , Modelos Lineales
17.
Glob Chang Biol ; 20(9): 2983-94, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24692253

RESUMEN

The consequences of deforestation for aboveground biodiversity have been a scientific and political concern for decades. In contrast, despite being a dominant component of biodiversity that is essential to the functioning of ecosystems, the responses of belowground biodiversity to forest removal have received less attention. Single-site studies suggest that soil microbes can be highly responsive to forest removal, but responses are highly variable, with negligible effects in some regions. Using high throughput sequencing, we characterize the effects of deforestation on microbial communities across multiple biomes and explore what determines the vulnerability of microbial communities to this vegetative change. We reveal consistent directional trends in the microbial community response, yet the magnitude of this vegetation effect varied between sites, and was explained strongly by soil texture. In sandy sites, the difference in vegetation type caused shifts in a suite of edaphic characteristics, driving substantial differences in microbial community composition. In contrast, fine-textured soil buffered microbes against these effects and there were minimal differences between communities in forest and grassland soil. These microbial community changes were associated with distinct changes in the microbial catabolic profile, placing community changes in an ecosystem functioning context. The universal nature of these patterns allows us to predict where deforestation will have the strongest effects on soil biodiversity, and how these effects could be mitigated.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/estadística & datos numéricos , Bosques , Microbiota/genética , Microbiología del Suelo , Suelo/química , Análisis de Varianza , Secuencia de Bases , Dióxido de Carbono/metabolismo , Ácidos Grasos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Lineales , Datos de Secuencia Molecular , Puerto Rico , Especificidad de la Especie , Estados Unidos
18.
J Environ Qual ; 43(6): 1963-71, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25602213

RESUMEN

As the world's population increases, marginal lands such as drylands are likely to become more important for food production. One proven strategy for improving crop production in drylands involves shifting from conventional tillage to no-till to increase water use efficiency, especially when this shift is coupled with more intensive crop rotations. Practices such as no-till that reduce soil disturbance and increase crop residues may promote C and N storage in soil organic matter, thus promoting N retention and reducing N losses. By sampling soils 15 yr after a N tracer addition, this study compared long-term soil N retention across several agricultural management strategies in current and converted shortgrass steppe ecosystems: grazed and ungrazed native grassland, occasionally mowed planted perennial grassland, and three cropping intensities of no-till dryland cropping. We also examined effects of the environmental variables site location and topography on N retention. Overall, the long-term soil N retention of >18% in these managed semiarid ecosystems was high compared with published values for other cropped or grassland ecosystems. Cropping practices strongly influenced long-term N retention, with planted perennial grass systems retaining >90% of N in soil compared with 30% for croplands. Grazing management, topography, and site location had smaller effects on long-term N retention. Estimated 15-yr N losses were low for intact and cropped systems. This work suggests that semiarid perennial grass ecosystems are highly N retentive and that increased intensity of semiarid land management can increase the amount of protein harvested without increasing N losses.

19.
PLoS One ; 18(3): e0283128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36917602

RESUMEN

Climate change will significantly impact the world's ecosystems, in part by altering species interactions and ecological processes, such as herbivory and plant community dynamics, which may impact forage quality and ecosystem production. Yet relatively few field experimental manipulations assessing all of these parameters have been performed to date. To help fill this knowledge gap, we evaluated the effects of increased temperature (+3°C day and night, year-round) and precipitation (+30% of mean annual rainfall) on slug herbivory and abundance and plant community dynamics biweekly in a pasture located in central Kentucky, U.S.A. Warming increased slug abundance once during the winter, likely due to improving conditions for foraging, whereas warming reduced slug abundance at times in late spring, mid-summer, and early fall (from 62-95% reduction depending on month). We found that warming and increased precipitation did not significantly modify slug herbivory at our site, despite altering slug abundance and affecting plant community composition and forage quality. Climate change will alter seasonal patterns of slug abundance through both direct effects on slug biology and indirect effects mediated by changes in the plant community, suggesting that pasture management practices may have to adapt.


Asunto(s)
Ecosistema , Gastrópodos , Animales , Pradera , Cambio Climático , Plantas
20.
Nat Commun ; 14(1): 2607, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147282

RESUMEN

Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs - designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [-4.1, -0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Causalidad , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA