Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Am Chem Soc ; 145(4): 2473-2484, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689617

RESUMEN

Electrolytes, consisting of salts, solvents, and additives, must form a stable solid electrolyte interphase (SEI) to ensure the performance and durability of lithium(Li)-ion batteries. However, the electric double layer (EDL) structure near charged surfaces is still unsolved, despite its importance in dictating the species being reduced for SEI formation near a negative electrode. In this work, a newly developed model was used to illustrate the effect of EDL on SEI formation in two essential electrolytes, the carbonate-based electrolyte for Li-ion batteries and the ether-based electrolyte for batteries with Li-metal anodes. Both electrolytes have fluoroethylene carbonate (FEC) as a common additive to form the beneficial F-containing SEI component (e.g., LiF). However, the role of FEC drastically differs in these electrolytes. FEC is an effective SEI modifier for the carbonate-based electrolyte by being the only F-containing species entering the EDL and being reduced, as the anion (PF6-) will not enter the EDL. For the ether-based electrolyte, both the anion (TFSI-) and FEC can enter the EDL and be reduced. The competition of the two species within the EDL due to the surface charge and temperature leads to a unique temperature effect observed in prior experiments: the FEC additive is more effective in modulating SEI components at a low temperature (-40 °C) than at room temperature (20 °C) in the ether-based electrolyte. These collective quantitative agreements with experiments emphasize the importance of incorporating the effect of the EDL in multicomponent electrolyte reduction reactions in simulations/experiments to predict/control the formation of the SEI layer.

2.
Nano Lett ; 22(2): 554-560, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34989235

RESUMEN

We demonstrate the vapor-liquid-solid growth of single-crystalline i-Si, i-Si/n-Si, and SixGe1-x/SiyGe1-y nanowires via the Geode process. By enabling nanowire growth on the large internal surface area of a microcapsule powder, the Geode process improves the scalability of semiconductor nanowire manufacturing while maintaining nanoscale programmability. Here, we show that heat and mass transport limitations introduced by the microcapsule wall are negligible, enabling the same degree of compositional control for nanowires grown inside microcapsules and on conventional flat substrates. Efficient heat and mass transport also minimize the structural variations of nanowires grown in microcapsules with different diameters and wall thicknesses. Nanowires containing at least 16 segments and segment lengths below 75 nm are demonstrated.

3.
Nat Mater ; 20(4): 503-510, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33510445

RESUMEN

Despite progress in solid-state battery engineering, our understanding of the chemo-mechanical phenomena that govern electrochemical behaviour and stability at solid-solid interfaces remains limited compared to at solid-liquid interfaces. Here, we use operando synchrotron X-ray computed microtomography to investigate the evolution of lithium/solid-state electrolyte interfaces during battery cycling, revealing how the complex interplay among void formation, interphase growth and volumetric changes determines cell behaviour. Void formation during lithium stripping is directly visualized in symmetric cells, and the loss of contact that drives current constriction at the interface between lithium and the solid-state electrolyte (Li10SnP2S12) is quantified and found to be the primary cause of cell failure. The interphase is found to be redox-active upon charge, and global volume changes occur owing to partial molar volume mismatches at either electrode. These results provide insight into how chemo-mechanical phenomena can affect cell performance, thus facilitating the development of solid-state batteries.

4.
Nano Lett ; 21(19): 8197-8204, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34570490

RESUMEN

It is critical to understand the transformation mechanisms in layered metal chalcogenides to enable controlled synthesis and processing. Here, we develop an alumina encapsulation layer-based in situ transmission electron microscopy (TEM) setup that enables the investigation of melting, crystallization, and alloying of nanoscale bismuth telluride platelets while limiting sublimation in the high-vacuum TEM environment. Heating alumina-encapsulated platelets to 700 °C in situ resulted in melting that initiated at edge planes and proceeded via the movement of a sharp interface. The encapsulated melt was then cooled to induce solidification, with individual nuclei growing to form single crystals with the same basal plane orientation as the original platelet and nonequilibrium crystal shapes imposed by the encapsulation layer. Finally, heating platelets in the presence of antimony caused alloying and lattice strain, along with heterogeneous phase formation. These findings provide new insight into important transformation processes in layered metal chalcogenide materials.

5.
Nano Lett ; 19(12): 8664-8672, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31671260

RESUMEN

While Li-ion batteries are known to fail at temperatures below -20 °C, very little is known regarding the low-temperature behavior of next-generation high-capacity electrode materials. The lithium metal anode is of particular interest for high-energy battery chemistries, but improved understanding of and control over its electrochemical and nanoscale interfacial behavior in diverse conditions is necessary. Here, we investigate lithium deposition/stripping, morphology evolution, and solid-electrolyte interphase (SEI) structure and properties down to -80 °C using an ether-based electrolyte (DOL/DME). As temperature is reduced, we find that the morphology of deposited lithium is significantly altered. Furthermore, cryogenic transmission electron microscopy coupled with vacuum-transfer X-ray photoelectron spectroscopy reveal that the SEI exhibits different structure, chemistry, thickness, and conductive properties at lower temperatures. These results show that Li is promising for batteries operating under extreme conditions, and the distinct nanoscale evolution of Li electrodes at different temperatures must be considered when designing high-energy batteries.

6.
Nano Lett ; 19(10): 7236-7245, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31539476

RESUMEN

Silicon-core-carbon-shell nanoparticles have been widely studied as promising candidates for the replacement of graphite in commercial lithium-ion batteries. Over more than 10 years of R&D, the many groups actively working in this field have proposed a profusion of distinctive nanomaterial designs. This broad variety makes it extremely challenging to establish mechanistic insight into how fundamental material structure and properties affect battery performance. In particular, the interplay between the character of the carbon encapsulation layer and the electrochemical performance of the composite is still poorly understood. In this work, we aim to address this lack of knowledge through the development of a modified chemical vapor deposition approach that enables precise control of the degree of graphitization of the carbon coating. We provide a comparison between core-shell structures maintaining identical silicon cores with different types of carbon shells, that is, graphitic carbon and amorphous carbon. A highly graphitic carbon layer is not only characterized by higher electrical conductivity but markedly favors the transport of lithium ions into the silicon core with respect to an amorphous one. This advantageous property confers better cycling stability to the composite material. We also demonstrate that the graphitic-carbon-coated particles display excellent electrochemical performance even when used as a simple "drop-in" additive in graphite-dominant anodes for current generation Li-ion batteries. Replacement of 10% by weight of graphite in the electrode composition results in an increase of 60% in the storage capacity with a first cycle Coulombic efficiency of 91% and capacity retention over 100 cycles of 86%.

7.
Nano Lett ; 18(7): 4331-4337, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29860834

RESUMEN

Although vapor-liquid-solid (VLS) growth of nanowires from alloy seed particles is common in various semiconductor systems, related wire growth in all-metal systems is rare. Here, we report the spontaneous growth of nano- and microwires from metal seed particles during the cooling of Li-rich bulk alloys containing Au, Ag, or In. The as-grown wires feature Au-, Ag-, or In-rich metal tips and LiOH shafts; the results indicate that the wires grow as Li metal and are converted to polycrystalline LiOH during and/or after growth due to exposure to H2O and O2. This new process is a simple way to create nanostructures, and the findings suggest that metal nanowire growth from alloy seeds is possible in a variety of systems.

8.
Nature ; 549(7670): 37-38, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28880296
9.
Nano Lett ; 21(15): 6353-6355, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34292758
10.
Nano Lett ; 15(2): 1264-71, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25602713

RESUMEN

Inorganic nanocrystals have attracted widespread attention both for their size-dependent properties and for their potential use as building blocks in an array of applications. A complete understanding of chemical transformations in nanocrystals is important for controlling structure, composition, and electronic properties. Here, we utilize in situ high-resolution transmission electron microscopy to study structural and morphological transformations in individual sulfide nanocrystals (copper sulfide, iron sulfide, and cobalt sulfide) as they react with lithium. The experiments reveal the influence of structure and composition on the transformation pathway (conversion versus displacement reactions), and they provide a high-resolution view of the unique displacement reaction mechanism in copper sulfide in which copper metal is extruded from the crystal. The structural similarity between the initial and final phases, as well as the mobility of ions within the crystal, are seen to exert a controlling influence on the reaction pathway.

11.
Proc Natl Acad Sci U S A ; 109(11): 4080-5, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371565

RESUMEN

From surface hardening of steels to doping of semiconductors, atom insertion in solids plays an important role in modifying chemical, physical, and electronic properties of materials for a variety of applications. High densities of atomic insertion in a solid can result in dramatic structural transformations and associated changes in mechanical behavior: This is particularly evident during electrochemical cycling of novel battery electrodes, such as alloying anodes, conversion oxides, and sulfur and oxygen cathodes. Silicon, which undergoes 400% volume expansion when alloying with lithium, is an extreme case and represents an excellent model system for study. Here, we show that fracture locations are highly anisotropic for lithiation of crystalline Si nanopillars and that fracture is strongly correlated with previously discovered anisotropic expansion. Contrary to earlier theoretical models based on diffusion-induced stresses where fracture is predicted to occur in the core of the pillars during lithiation, the observed cracks are present only in the amorphous lithiated shell. We also show that the critical fracture size is between about 240 and 360 nm and that it depends on the electrochemical reaction rate.

12.
Phys Chem Chem Phys ; 16(8): 3623-31, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24435160

RESUMEN

WO3 is a promising candidate for a photoanode material in an acidic electrolyte, in which it is more stable than most metal oxides, but kinetic limitations combined with the large driving force available in the WO3 valence band for water oxidation make competing reactions such as the oxidation of the acid counterion a more favorable reaction. The incorporation of an oxygen evolving catalyst (OEC) on the WO3 surface can improve the kinetics for water oxidation and increase the branching ratio for O2 production. Ir-based OECs were attached to WO3 photoanodes by a variety of methods including sintering from metal salts, sputtering, drop-casting of particles, and electrodeposition to analyze how attachment strategies can affect photoelectrochemical oxygen production at WO3 photoanodes in 1 M H2SO4. High surface coverage of catalyst on the semiconductor was necessary to ensure that most minority-carrier holes contributed to water oxidation through an active catalyst site rather than a side-reaction through the WO3/electrolyte interface. Sputtering of IrO2 layers on WO3 did not detrimentally affect the energy-conversion behavior of the photoanode and improved the O2 yield at 1.2 V vs. RHE from ~0% for bare WO3 to 50-70% for a thin, optically transparent catalyst layer to nearly 100% for thick, opaque catalyst layers. Measurements with a fast one-electron redox couple indicated ohmic behavior at the IrO2/WO3 junction, which provided a shunt pathway for electrocatalytic IrO2 behavior with the WO3 photoanode under reverse bias. Although other OECs were tested, only IrO2 displayed extended stability under the anodic operating conditions in acid as determined by XPS.

14.
Nano Lett ; 13(7): 3385-90, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23758646

RESUMEN

Rational nanostructure design has been a promising route to address critical materials issues for enabling next-generation high capacity lithium ion batteries for portable electronics, vehicle electrification, and grid-scale storage. However, synthesis of functional nanostructures often involves expensive starting materials and elaborate processing, both of which present a challenge for successful implementation in low-cost applications. In seeking a sustainable and cost-effective route to prepare nanostructured battery electrode materials, we are inspired by the diversity of natural materials. Here, we show that crab shells with the unique Bouligand structure consisting of highly mineralized chitin-protein fibers can be used as biotemplates to fabricate hollow carbon nanofibers; these fibers can then be used to encapsulate sulfur and silicon to form cathodes and anodes for Li-ion batteries. The resulting nanostructured electrodes show high specific capacities (1230 mAh/g for sulfur and 3060 mAh/g for silicon) and excellent cycling performance (up to 200 cycles with 60% and 95% capacity retention, respectively). Since crab shells are readily available due to the 0.5 million tons produced annually as a byproduct of crab consumption, their use as a sustainable and low-cost nanotemplate represents an exciting direction for nanostructured battery materials.

15.
Nano Lett ; 13(2): 758-64, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23323680

RESUMEN

To utilize high-capacity Si anodes in next-generation Li-ion batteries, the physical and chemical transformations during the Li-Si reaction must be better understood. Here, in situ transmission electron microscopy is used to observe the lithiation/delithiation of amorphous Si nanospheres; amorphous Si is an important anode material that has been less studied than crystalline Si. Unexpectedly, the experiments reveal that the first lithiation occurs via a two-phase mechanism, which is contrary to previous understanding and has important consequences for mechanical stress evolution during lithiation. On the basis of kinetics measurements, this behavior is suggested to be due to the rate-limiting effect of Si-Si bond breaking. In addition, the results show that amorphous Si has more favorable kinetics and fracture behavior when reacting with Li than does crystalline Si, making it advantageous to use in battery electrodes. Amorphous spheres up to 870 nm in diameter do not fracture upon lithiation; this is much larger than the 150 nm critical fracture diameter previously identified for crystalline Si spheres.

16.
Nano Lett ; 13(12): 6106-12, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24224495

RESUMEN

Over the past few years, in situ transmission electron microscopy (TEM) studies of lithium ion batteries using an open-cell configuration have helped us to gain fundamental insights into the structural and chemical evolution of the electrode materials in real time. In the standard open-cell configuration, the electrolyte is either solid lithium oxide or an ionic liquid, which is point-contacted with the electrode. This cell design is inherently different from a real battery, where liquid electrolyte forms conformal contact with electrode materials. The knowledge learnt from open cells can deviate significantly from the real battery, calling for operando TEM technique with conformal liquid electrolyte contact. In this paper, we developed an operando TEM electrochemical liquid cell to meet this need, providing the configuration of a real battery and in a relevant liquid electrolyte. To demonstrate this novel technique, we studied the lithiation/delithiation behavior of single Si nanowires. Some of lithiation/delithation behaviors of Si obtained using the liquid cell are consistent with the results from the open-cell studies. However, we also discovered new insights different from the open cell configuration-the dynamics of the electrolyte and, potentially, a future quantitative characterization of the solid electrolyte interphase layer formation and structural and chemical evolution.


Asunto(s)
Litio/química , Nanocables/química , Silicio/química , Suministros de Energía Eléctrica , Electroquímica , Electrodos , Microscopía Electrónica de Transmisión , Propiedades de Superficie
17.
ACS Energy Lett ; 9(6): 2554-2563, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38903403

RESUMEN

Lithium alloy anodes in the form of dense foils offer significant potential advantages over lithium metal and particulate alloy anodes for solid-state batteries (SSBs). However, the reaction and degradation mechanisms of dense alloy anodes remain largely unexplored. Here, we investigate the electrochemical lithiation/delithiation behavior of 12 elemental alloy anodes in SSBs with Li6PS5Cl solid-state electrolyte (SSE), enabling direct behavioral comparisons. The materials show highly divergent first-cycle Coulombic efficiency, ranging from 99.3% for indium to ∼20% for antimony. Through microstructural imaging and electrochemical testing, we identify lithium trapping within the foil during delithiation as the principal reason for low Coulombic efficiency in most materials. The exceptional Coulombic efficiency of indium is found to be due to unique delithiation reaction front morphology evolution in which the high-diffusivity LiIn phase remains at the SSE interface. This study links composition to reaction behavior for alloy anodes and thus provides guidance toward better SSBs.

18.
ACS Nano ; 18(21): 13866-13875, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38751199

RESUMEN

Control over material structure and morphology during electrodeposition is necessary for material synthesis and energy applications. One approach to guide crystallite formation is to take advantage of epitaxy on a current collector to facilitate crystallographic control. Single-layer graphene on metal foils can promote "remote epitaxy" during Cu and Zn electrodeposition, resulting in growth of metal that is crystallographically aligned to the substrate beneath graphene. However, the substrate-graphene-deposit interactions that allow for epitaxial electrodeposition are not well understood. Here, we investigate how different graphene layer thicknesses (monolayer, bilayer, trilayer, and graphite) influence the electrodeposition of Zn and Cu. Scanning transmission electron microscopy and electron backscatter diffraction are leveraged to understand metal morphology and structure, demonstrating that remote epitaxy occurs on mono- and bilayer graphene but not trilayer or thicker. Density functional theory (DFT) simulations reveal the spatial electronic interactions through thin graphene that promote remote epitaxy. This work advances our understanding of electrochemical remote epitaxy and provides strategies for improving control over electrodeposition.

19.
ACS Nano ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074070

RESUMEN

Solid-state batteries with Li metal anodes can offer increased energy density compared to Li-ion batteries. However, the performance of pure Li anodes has been limited by morphological instabilities at the interface between Li and the solid-state electrolyte (SSE). Composites of Li metal with other materials such as carbon and Li alloys have exhibited improved cycling stability, but the mechanisms associated with this enhanced performance are not clear, especially at the low stack pressures needed for practical viability. Here, we investigate the structural evolution and correlated electrochemical behavior of Li metal composites containing reduced graphene oxide (rGO) and Li-Ag alloy particles. The nanoscale carbon scaffold maintains homogeneous contact with the SSE during stripping and facilitates Li transport to the interface; these effects largely prevent interfacial disconnection even at low stack pressure. The Li-Ag is needed to ensure cyclic refilling of the rGO scaffold with Li during plating, and the solid-solution character of Li-Ag improves cycling stability compared to other materials that form intermetallic compounds. Full cells with sulfur cathodes were tested at relatively low stack pressure, achieving 100 stable cycles with 79% capacity retention.

20.
Nano Lett ; 12(6): 3315-21, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22551164

RESUMEN

Silicon is regarded as one of the most promising anode materials for next generation lithium-ion batteries. For use in practical applications, a Si electrode must have high capacity, long cycle life, high efficiency, and the fabrication must be industrially scalable. Here, we design and fabricate a yolk-shell structure to meet all these needs. The fabrication is carried out without special equipment and mostly at room temperature. Commercially available Si nanoparticles are completely sealed inside conformal, thin, self-supporting carbon shells, with rationally designed void space in between the particles and the shell. The well-defined void space allows the Si particles to expand freely without breaking the outer carbon shell, therefore stabilizing the solid-electrolyte interphase on the shell surface. High capacity (∼2800 mAh/g at C/10), long cycle life (1000 cycles with 74% capacity retention), and high Coulombic efficiency (99.84%) have been realized in this yolk-shell structured Si electrode.


Asunto(s)
Suministros de Energía Eléctrica , Electrodos , Litio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Silicio/química , Diseño de Equipo , Análisis de Falla de Equipo , Iones , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA