RESUMEN
Among the caspases that cause regulated cell death, a unique function for caspase-7 has remained elusive. Caspase-3 performs apoptosis, whereas caspase-7 is typically considered an inefficient back-up. Caspase-1 activates gasdermin D pores to lyse the cell; however, caspase-1 also activates caspase-7 for unknown reasons1. Caspases can also trigger cell-type-specific death responses; for example, caspase-1 causes the extrusion of intestinal epithelial cell (IECs) in response to infection with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium)2,3. Here we show in both organoids and mice that caspase-7-deficient IECs do not complete extrusion. Mechanistically, caspase-7 counteracts gasdermin D pores and preserves cell integrity by cleaving and activating acid sphingomyelinase (ASM), which thereby generates copious amounts of ceramide to enable enhanced membrane repair. This provides time to complete the process of IEC extrusion. In parallel, we also show that caspase-7 and ASM cleavage are required to clear Chromobacterium violaceum and Listeria monocytogenes after perforin-pore-mediated attack by natural killer cells or cytotoxic T lymphocytes, which normally causes apoptosis in infected hepatocytes. Therefore, caspase-7 is not a conventional executioner but instead is a death facilitator that delays pore-driven lysis so that more-specialized processes, such as extrusion or apoptosis, can be completed before cell death. Cells must put their affairs in order before they die.
Asunto(s)
Caspasa 7 , Perforina , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Esfingomielina Fosfodiesterasa , Animales , Apoptosis , Caspasa 7/metabolismo , Chromobacterium/inmunología , Células Epiteliales/citología , Intestinos/citología , Células Asesinas Naturales/inmunología , Listeria monocytogenes/inmunología , Ratones , Organoides , Perforina/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Linfocitos T Citotóxicos/inmunologíaRESUMEN
Granulomas often form around pathogens that cause chronic infections. Here, we discover an innate granuloma model in mice with an environmental bacterium called Chromobacterium violaceum. Granuloma formation not only successfully walls off, but also clears, the infection. The infected lesion can arise from a single bacterium that replicates despite the presence of a neutrophil swarm. Bacterial replication ceases when macrophages organize around the infection and form a granuloma. This granuloma response is accomplished independently of adaptive immunity that is typically required to organize granulomas. The C. violaceum-induced granuloma requires at least two separate defense pathways, gasdermin D and iNOS, to maintain the integrity of the granuloma architecture. This innate granuloma successfully eradicates C. violaceum infection. Therefore, this C. violaceum-induced granuloma model demonstrates that innate immune cells successfully organize a granuloma and thereby resolve infection by an environmental pathogen.
Asunto(s)
Granuloma , Neutrófilos , Animales , Ratones , Macrófagos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismoRESUMEN
Granulomas often form around pathogens that cause chronic infections. Here, we discover a novel granuloma model in mice. Chromobacterium violaceum is an environmental bacterium that stimulates granuloma formation that not only successfully walls off but also clears the infection. The infected lesion can arise from a single bacterium that replicates in the presence of a neutrophil swarm. Bacterial replication ceases when macrophages organize around the infection and form a granuloma. This granuloma response is accomplished independently of adaptive immunity that is typically required to organize granulomas. The C. violaceum -induced granuloma requires at least two separate defense pathways, gasdermin D and iNOS, to maintain the integrity of the granuloma architecture. These innate granulomas successfully eradicate C. violaceum infection. Therefore, this new C. violaceum -induced granuloma model demonstrates that innate immune cells successfully organize a granuloma and thereby eradicate infection by an environmental pathogen.
RESUMEN
Either caspase-1 or caspase-11 can cleave gasdermin D to cause pyroptosis, eliminating intracellular replication niches. We previously showed that macrophages detect Burkholderia thailandensis via NLRC4, triggering the release of interleukin (IL)-18 and driving an essential interferon (IFN)-γ response that primes caspase-11. We now identify the IFN-γ-producing cells as a mixture of natural killer (NK) and T cells. Although both caspase-1 and caspase-11 can cleave gasdermin D in macrophages and neutrophils, we find that NLRC4-activated caspase-1 triggers pyroptosis in macrophages, but this pathway does not trigger pyroptosis in neutrophils. In contrast, caspase-11 triggers pyroptosis in both macrophages and neutrophils. This translates to an absolute requirement for caspase-11 in neutrophils during B. thailandensis infection in mice. We present an example of inflammasome sensors causing diverging outcomes in different cell types. Thus, cell fates are dictated not simply by the pathogen or inflammasome, but also by how the cell is wired to respond to detection events.