Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 608(7923): 552-557, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948636

RESUMEN

As the climate changes, warmer spring temperatures are causing earlier leaf-out1-3 and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a tendency towards increased growing season length3 and annual CO2 uptake1,3-7. However, less is known about how spring temperatures affect tree stem growth8,9, which sequesters carbon in wood that has a long residence time in the ecosystem10,11. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO2 uptake in years with warmer spring temperatures4,5 does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models1,12, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO2 sink of temperate deciduous forests.


Asunto(s)
Calentamiento Global , Estaciones del Año , Temperatura , Árboles , Aclimatación , Biomasa , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Modelos Climáticos , Bosques , Calentamiento Global/estadística & datos numéricos , América del Norte , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Factores de Tiempo , Árboles/anatomía & histología , Árboles/clasificación , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Madera/crecimiento & desarrollo , Madera/metabolismo
2.
New Phytol ; 237(1): 22-47, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239086

RESUMEN

Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf ), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopy Tleaf . Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damaging Tleaf than their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme high Tleaf 's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest-climate feedback.


Asunto(s)
Ecosistema , Bosques , Árboles , Hojas de la Planta , Microclima
3.
New Phytol ; 231(2): 601-616, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33049084

RESUMEN

As climate change drives increased drought in many forested regions, mechanistic understanding of the factors conferring drought tolerance in trees is increasingly important. The dendrochronological record provides a window through which we can understand how tree size and traits shape growth responses to droughts. We analyzed tree-ring records for 12 species in a broadleaf deciduous forest in Virginia (USA) to test hypotheses for how tree height, microenvironment characteristics, and species' traits shaped drought responses across the three strongest regional droughts over a 60-yr period. Drought tolerance (resistance, recovery, and resilience) decreased with tree height, which was strongly correlated with exposure to higher solar radiation and evaporative demand. The potentially greater rooting volume of larger trees did not confer a resistance advantage, but marginally increased recovery and resilience, in sites with low topographic wetness index. Drought tolerance was greater among species whose leaves lost turgor (wilted) at more negative water potentials and experienced less shrinkage upon desiccation. The tree-ring record reveals that tree height and leaf drought tolerance traits influenced growth responses during and after significant droughts in the meteorological record. As climate change-induced droughts intensify, tall trees with drought-sensitive leaves will be most vulnerable to immediate and longer-term growth reductions.


Asunto(s)
Sequías , Árboles , Cambio Climático , Bosques , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA