Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(10): 5813-5822, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35226003

RESUMEN

Sulfuric acid is shown to form a core-shell particle on a micron-sized, optically-trapped spherical silica bead. The refractive indices of the silica and sulfuric acid, along with the shell thickness and bead radius were determined by reproducing Mie scattered optical white light as a function of wavelength in Mie spectroscopy. Micron-sized silica aerosols (silica beads were used as a proxy for atmospheric silica minerals) were levitated in a mist of sulfuric acid particles; continuous collection of Mie spectra throughout the collision of sulfuric acid aerosols with the optically trapped silica aerosol demonstrated that the resulting aerosol particle had a core-shell morphology. Contrastingly, the collision of aqueous sulfuric acid aerosols with optically trapped polystyrene aerosol resulted in a partially coated system. The light scattering from the optically levitated aerosols was successfully modelled to determine the diameter of the core aerosol (±0.003 µm), the shell thickness (±0.0003 µm) and the refractive index (±0.007). The experiment demonstrated that the presence of a thin film rapidly changed the light scattering of the original aerosol. When a 1.964 µm diameter silica aerosol was covered with a film of sulfuric acid 0.287 µm thick, the wavelength dependent Mie peak positions resembled sulfuric acid. Thus mineral aerosol advected into the stratosphere would likely be coated with sulfuric acid, with a core-shell morphology, and its light scattering properties would be effectively indistinguishable from a homogenous sulfuric acid aerosol if the film thickness was greater than a few 100 s of nm for UV-visible wavelengths.

2.
J Phys Chem A ; 124(46): 9617-9625, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33164512

RESUMEN

Polystyrene beads are often used as test particles in aerosol science. Here, a contact-less technique is reported for determining the refractive index of a solid aerosol particle as a function of wavelength and temperature (20-234 °C) simultaneously. Polystyrene beads with a diameter of 2 µm were optically trapped in air in the central orifice of a ceramic heating element, and Mie spectroscopy was used to determine the radius and refractive index (to precisions of 0.8 nm and 0.0014) of eight beads as a function of heating and cooling. Refractive index, n, as a function of wavelength, λ (0.480-0.650 µm), and temperature, T, in centigrade, was found to be n = 1.5753 - (1.7336 × 10-4)T + (9.733 × 10-3)λ-2 in the temperature range 20 < T < 100 °C and n = 1.5877 - (2.9739 × 10-4)T + (9.733 × 10-3)λ-2 in the temperature range 100 < T < 234 °C. The technique represents a step change in measuring the refractive index of materials across an extended range of temperature and wavelength in an absolute manner and with high precision.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA