Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 135(3): 449-61, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18984157

RESUMEN

Pluripotent stem cell lines can be derived from blastocyst embryos, which yield embryonic stem cell lines (ES cells), as well as the postimplantation epiblast, which gives rise to epiblast stem cell lines (EpiSCs). Remarkably, ES cells and EpiSCs display profound differences in the combination of growth factors that maintain their pluripotent state. Molecular and functional differences between these two stem cell types demonstrate that the tissue of origin and/or the growth factor milieu may be important determinants of the stem cell identity. We explored how developmental stage of the tissue of origin and culture growth factor conditions affect the stem cell pluripotent state. Our findings indicate that novel stem cell lines, with unique functional and molecular properties, can be generated from murine blastocyst embryos. We demonstrate that the culture growth factor environment and cell-cell interaction play a critical role in defining several unique and stable stem cell ground states.


Asunto(s)
Blastocisto/citología , Línea Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Madre Pluripotentes/citología , Animales , Proteína Morfogenética Ósea 4/metabolismo , Cadherinas/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Embrión de Mamíferos/citología , Estratos Germinativos/citología , Ratones
2.
Stem Cells ; 36(1): 11-21, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28948674

RESUMEN

Lineage commitment and differentiation of skeletal stem cells/bone marrow stromal cells (SSCs/BMSCs, often called bone marrow-derived "mesenchymal stem/stromal" cells) offer an important opportunity to study skeletal and hematopoietic diseases, and for tissue engineering and regenerative medicine. Currently, many studies in this field have relied on cell lineage tracing methods in mouse models, which have provided a significant advancement in our knowledge of skeletal and hematopoietic stem-cell niches in bone marrow (BM). However, there is a lack of agreement in numerous fundamental areas, including origins of various BM stem-cell niches, cell identities, and their physiological roles in the BM. In order to resolve these issues, we propose a new hypothesis of "paralogous" stem-cell niches (PSNs); that is, progressively altered parallel niches within an individual species throughout the life span of the organism. A putative PSN code seems to be plausible based on analysis of transcriptional signatures in two representative genes that encode Nes-GFP and leptin receptors, which are frequently used to monitor SSC lineage development in BM. Furthermore, we suggest a dynamic paralogous BM niche (PBMN) model that elucidates the coupling and uncoupling mechanisms between BM stem-cell niches and their zones of active regeneration during different developmental stages. Elucidation of these PBMNs would enable us to resolve the existing controversies, thus paving the way to achieving precision regenerative medicine and pharmaceutical applications based on these BM cell resources. Stem Cells 2018;36:11-21.


Asunto(s)
Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Nicho de Células Madre/genética , Células Madre/metabolismo , Diferenciación Celular , Linaje de la Célula , Humanos
3.
Bioorg Med Chem Lett ; 28(19): 3231-3235, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30170942

RESUMEN

Due to increased interest in As(III) S-adenosylmethionine methyltransferase (AS3MT), a search for chemical probes that can help elucidate function was initiated. A homology model was built based on related enzymes, and virtual screening produced 426 potential hits. Evaluation of these compounds in a functional enzymatic assay revealed several modest inhibitors including an O-substituted 2-amino-3-cyano indole scaffold. Two iterations of near neighbor searches revealed compound 5 as a potent inhibitor of AS3MT with good selectivity over representative methyltransferases DOT1L and NSD2 as well as a representative set of diverse receptors. Compound 5 should prove to be a useful tool to investigate the role of AS3MT and a potential starting point for further optimization.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Metiltransferasas/antagonistas & inhibidores , Humanos
4.
Stem Cells ; 32(3): 770-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24155149

RESUMEN

The ex vivo expansion of stem cells is making major contribution to biomedical research. The multipotent nature of neural precursors acutely isolated from the developing central nervous system has been established in a series of studies. Understanding the mechanisms regulating cell expansion in tissue culture would support their expanded use either in cell therapies or to define disease mechanisms. Basic fibroblast growth factor (FGF2) and insulin, ligands for tyrosine kinase receptors, are sufficient to sustain neural stem cells (NSCs) in culture. Interestingly, real-time imaging shows that these cells become multipotent every time they are passaged. Here, we analyze the role of FGF2 and insulin in the brief period when multipotent cells are present. FGF2 signaling results in the phosphorylation of Erk1/2, and activation of c-Fos and c-Jun that lead to elevated cyclin D mRNA levels. Insulin signals through the PI3k/Akt pathway to regulate cyclins at the post-transcriptional level. This precise Boolean regulation extends our understanding of the proliferation of multipotent NSCs and provides a basis for further analysis of proliferation control in the cell states defined by real-time mapping of the cell lineages that form the central nervous system.


Asunto(s)
Ciclina D/genética , Factor 2 de Crecimiento de Fibroblastos/farmacología , Insulina/farmacología , Células Madre Multipotentes/citología , Células-Madre Neurales/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Ciclina D/metabolismo , ADN/biosíntesis , Femenino , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/enzimología , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transcripción Genética/efectos de los fármacos
5.
Gastroenterology ; 142(3): 602-11, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22138358

RESUMEN

BACKGROUND & AIMS: Many studies of embryonic stem cells have investigated direct cell replacement of damaged tissues, but little is known about how donor cell-derived signals affect host tissue regeneration. We investigated the direct and indirect roles of human embryonic stem cell-derived cells in liver repair in mice. METHODS: To promote the initial differentiation of human embryonic stem cells into mesendoderm, we activated the ß-catenin signaling pathway with lithium; cells were then further differentiated into hepatocyte-like cells. The differentiated cells were purified by indocyanine green staining and laser microdissection and characterized by immunostaining, polymerase chain reaction, biochemical function, electron microscopy, and transplantation analyses. To investigate indirect effects of these cells, secreted proteins (secretomes) were analyzed by a label-free quantitative mass spectrometry. Carbon tetrachloride was used to induce acute liver injury in mice; cells or secreted proteins were administered by intrasplenic or intraperitoneal injection, respectively. RESULTS: The differentiated hepatocyte-like cells had multiple features of normal hepatocytes, engrafted efficiently into mice, and continued to have hepatic features; they promoted proliferation of host hepatocytes and revascularization of injured host liver tissues. Proteomic analysis identified proteins secreted from these cells that might promote host tissue repair. Injection of the secreted proteins into injured livers of mice promoted significant amounts of tissue regeneration without cell grafts. CONCLUSIONS: Hepatocyte-like cells derived from human embryonic stem cells contribute to recovery of injured liver tissues in mice, not only by cell replacement but also by delivering trophic factors that support endogenous liver regeneration.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/cirugía , Células Madre Embrionarias/trasplante , Hepatocitos/trasplante , Células Madre Pluripotentes Inducidas/trasplante , Regeneración Hepática , Hígado/patología , Animales , Biomarcadores/metabolismo , Tetracloruro de Carbono , Diferenciación Celular/efectos de los fármacos , Separación Celular/métodos , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Captura por Microdisección con Láser , Cloruro de Litio/farmacología , Hígado/irrigación sanguínea , Hígado/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Electrónica , Neovascularización Fisiológica , Reacción en Cadena de la Polimerasa , Proteómica/métodos , Factores de Tiempo , Cicatrización de Heridas
6.
Stem Cells ; 30(10): 2175-87, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22887864

RESUMEN

The expression and function of several multidrug transporters (including ABCB1 and ABCG2) have been studied in human cancer cells and in mouse and human adult stem cells. However, the expression of ABCG2 in human embryonic stem cells (hESCs) remains unclear. Limited and contradictory results in the literature from two research groups have raised questions regarding its expression and function. In this study, we used quantitative real-time PCR, Northern blots, whole genome RNA sequencing, Western blots, and immunofluorescence microscopy to study ABCG2 expression in hESCs. We found that full-length ABCG2 mRNA transcripts are expressed in undifferentiated hESC lines. However, ABCG2 protein was undetectable even under embryoid body differentiation or cytotoxic drug induction. Moreover, surface ABCG2 protein was coexpressed with the differentiation marker stage-specific embryonic antigen-1 of hESCs, following constant BMP-4 signaling at days 4 and 6. This expression was tightly correlated with the downregulation of two microRNAs (miRNAs) (i.e., hsa-miR-519c and hsa-miR-520h). Transfection of miRNA mimics and inhibitors of these two miRNAs confirmed their direct involvement in the regulation ABCG2 translation. Our findings clarify the controversy regarding the expression of the ABCG2 gene and also provide new insights into translational control of the expression of membrane transporter mRNAs by miRNAs in hESCs.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN Mensajero/biosíntesis , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/citología , Células Nutrientes , Fibroblastos , Humanos , Antígeno Lewis X/genética , Antígeno Lewis X/metabolismo , Ratones , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , Biosíntesis de Proteínas , Transfección
7.
Nature ; 448(7150): 196-9, 2007 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-17597760

RESUMEN

The application of human embryonic stem (ES) cells in medicine and biology has an inherent reliance on understanding the starting cell population. Human ES cells differ from mouse ES cells and the specific embryonic origin of both cell types is unclear. Previous work suggested that mouse ES cells could only be obtained from the embryo before implantation in the uterus. Here we show that cell lines can be derived from the epiblast, a tissue of the post-implantation embryo that generates the embryo proper. These cells, which we refer to as EpiSCs (post-implantation epiblast-derived stem cells), express transcription factors known to regulate pluripotency, maintain their genomic integrity, and robustly differentiate into the major somatic cell types as well as primordial germ cells. The EpiSC lines are distinct from mouse ES cells in their epigenetic state and the signals controlling their differentiation. Furthermore, EpiSC and human ES cells share patterns of gene expression and signalling responses that normally function in the epiblast. These results show that epiblast cells can be maintained as stable cell lines and interrogated to understand how pluripotent cells generate distinct fates during early development.


Asunto(s)
Línea Celular , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Implantación del Embrión , Células Madre Embrionarias/metabolismo , Expresión Génica , Humanos , Ratones , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
8.
Nature ; 442(7104): 823-6, 2006 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-16799564

RESUMEN

The hope of developing new transplantation therapies for degenerative diseases is limited by inefficient stem cell growth and immunological incompatibility with the host. Here we show that Notch receptor activation induces the expression of the specific target genes hairy and enhancer of split 3 (Hes3) and Sonic hedgehog (Shh) through rapid activation of cytoplasmic signals, including the serine/threonine kinase Akt, the transcription factor STAT3 and mammalian target of rapamycin, and thereby promotes the survival of neural stem cells. In both murine somatic and human embryonic stem cells, these positive signals are opposed by a control mechanism that involves the p38 mitogen-activated protein kinase. Transient administration of Notch ligands to the brain of adult rats increases the numbers of newly generated precursor cells and improves motor skills after ischaemic injury. These data indicate that stem cell expansion in vitro and in vivo, two central goals of regenerative medicine, may be achieved by Notch ligands through a pathway that is fundamental to development and cancer.


Asunto(s)
Receptores Notch/metabolismo , Sistemas de Mensajero Secundario , Células Madre/citología , Células Madre/metabolismo , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiopatología , Recuento de Células , Diferenciación Celular , División Celular , Supervivencia Celular , Células Cultivadas , Embrión de Mamíferos/citología , Humanos , Ligandos , Ratones , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Ratas , Medicina Regenerativa , Factor de Transcripción STAT3/metabolismo , Serina-Treonina Quinasas TOR , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Proc Natl Acad Sci U S A ; 105(39): 14891-6, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18809919

RESUMEN

A fundamental issue in stem cell biology is whether adult somatic stem cells are capable of accessing alternate tissue sites and continue functioning as stem cells in the new microenvironment. To address this issue relative to neurogenic stem cells in the mouse mammary gland microenvironment, we mixed wild-type mammary epithelial cells (MECs) with bona fide neural stem cells (NSCs) isolated from WAP-Cre/Rosa26R mice and inoculated them into cleared fat pads of immunocompromised females. Hosts were bred 6-8 weeks later and examined postinvolution. This allowed for mammary tissue growth, transient activation of the WAP-Cre gene, recombination, and constitutive expression of LacZ. The NSCs and their progeny contributed to mammary epithelial growth during ductal morphogenesis, and the Rosa26-LacZ reporter gene was activated by WAP-Cre expression during pregnancy. Some NSC-derived LacZ(+) cells expressed mammary-specific functions, including milk protein synthesis, whereas others adopted myoepithelial cell fates. Thus, NSCs and their progeny enter mammary epithelium-specific niches and adopt the function of similarly endowed mammary cells. This result supports the conclusion that tissue-specific signals emanating from the stroma and from the differentiated somatic cells of the mouse mammary gland can redirect the NSCs to produce cellular progeny committed to MEC fates.


Asunto(s)
Diferenciación Celular , Glándulas Mamarias Animales/crecimiento & desarrollo , Células Madre Multipotentes/citología , Neuronas/citología , Animales , Ciclo Celular , Diferenciación Celular/genética , Células Epiteliales/citología , Femenino , Genes Reporteros , Glándulas Mamarias Animales/citología , Ratones , Ratones Transgénicos , Proteínas de la Leche/genética , Morfogénesis , Embarazo , Proteínas/genética , ARN no Traducido , Trasplante de Células Madre , beta-Galactosidasa/genética
10.
Brain Res ; 1754: 147254, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33422542

RESUMEN

Schizophrenia is a neurodevelopmental psychiatric disorder, encompassing genetic and environmental risk factors. For several decades, investigators have been implementing the use of lesions of the neonatal rodent hippocampus to model schizophrenia, resulting in a broad spectrum of adult schizophrenia-related behavioral changes. Despite the extensive use of these proposed animal models of schizophrenia, the mechanisms by which these lesions result in schizophrenia-like behavioral alterations remain unclear. Here we provide in vivo evidence that transient pharmacological inactivation of the hippocampus via tetrodotoxin microinjections or a genetic reduction in brain derived neurotrophic factor (BDNF) protein levels (BDNF+/- rats) lead to global DNA hypomethylation, disrupted maturation of the neuronal nucleus and aberrant acoustic startle response in the adult rat. The similarity between the effects of the two treatments strongly indicate that BDNF signaling is involved in effects obtained after the TTX microinjections. These findings may shed light on the cellular mechanisms underlying the phenotypical features of neonatal transient inhibition of the hippocampus as a preclinical model of schizophrenia and suggest that BDNF signaling represents a target pathway for development of novel treatment therapies.


Asunto(s)
Conducta Animal/fisiología , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Metilación de ADN/fisiología , ADN/metabolismo , Hipocampo/metabolismo , Animales , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas/metabolismo , Ratas , Reflejo de Sobresalto/genética , Reflejo de Sobresalto/fisiología , Esquizofrenia/genética , Esquizofrenia/metabolismo
11.
Dev Growth Differ ; 52(3): 293-301, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20298258

RESUMEN

Gastrulation is the defining feature of metazoan development where it serves to apportion seemingly equivalent, pluripotent cells to specific fates. The three embryonic germ layers generated during gastrulation from the pluripotent epiblast including ectoderm, mesoderm, and definitive endoderm, contain the progenitors required to build all of the tissues of the developing organism. As a result, there is great interest in understanding the events that coordinate gastrulation. Because developing embryos in placental mammals are relatively inaccessible, stem cells are widely used for experimental and biochemical interrogation of these processes. Epiblast stem cells (EpiSCs) are grown from the post-implantation epiblast, which is the most proximal pluripotent tissue to the early somatic and germ cell precursors. Because EpiSCs can be propagated indefinitely in vitro as a stable state that recapitulates the properties of the post-implantation epiblast, they are uniquely positioned to provide novel insight into the developmental window where somatic and germ cell lineages are first established. Here we discuss the nature of EpiSCs and their significance in understanding gastrulation and cell specification in relationship to other pluripotent cell culture models.


Asunto(s)
Células Madre Embrionarias/citología , Estratos Germinativos/citología , Animales , Diferenciación Celular , Separación Celular , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Femenino , Gastrulación/genética , Gastrulación/fisiología , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/metabolismo , Humanos , Ratones , Modelos Biológicos , Proteína Nodal/genética , Proteína Nodal/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Embarazo , Primates , Transducción de Señal
12.
J Cell Biol ; 168(2): 179-84, 2005 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-15657390

RESUMEN

Nucleostemin (NS) was identified as a stem cell- and cancer cell-enriched nucleolar protein that controls the proliferation of these cells. Here, we report the mechanism that regulates its dynamic shuttling between the nucleolus and nucleoplasm. The nucleolar residence of nucleostemin involves a transient and a long-term binding by the basic and GTP-binding domains, and a dissociation mechanism mediated by the COOH-terminal region. This cycle is propelled by the GTP binding state of nucleostemin. We propose that a rapid nucleostemin cycle is designed to translate extra- and intra-cellular signals into the amount of nucleostemin in the nucleolus in a bidirectional and fast manner.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/fisiología , Guanosina Trifosfato/fisiología , Proteínas Nucleares/metabolismo , Transporte de Proteínas/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular Tumoral , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Cricetinae , Cricetulus , Dactinomicina/farmacología , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas de Unión al GTP , Proteínas Fluorescentes Verdes/genética , Guanosina Trifosfato/metabolismo , Humanos , Espacio Intranuclear/metabolismo , Cinética , Microscopía Confocal , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Ácido Micofenólico/farmacología , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleofosmina , Unión Proteica , Transporte de Proteínas/efectos de los fármacos
13.
PLoS Biol ; 5(12): e325, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18076286

RESUMEN

Parkinson disease affects more than 1% of the population over 60 y old. The dominant models for Parkinson disease are based on the use of chemical toxins to kill dopamine neurons, but do not address the risk factors that normally increase with age. Forkhead transcription factors are critical regulators of survival and longevity. The forkhead transcription factor, foxa2, is specifically expressed in adult dopamine neurons and their precursors in the medial floor plate. Gain- and loss-of-function experiments show this gene, foxa2, is required to generate dopamine neurons during fetal development and from embryonic stem cells. Mice carrying only one copy of the foxa2 gene show abnormalities in motor behavior in old age and an associated progressive loss of dopamine neurons. Manipulating forkhead function may regulate both the birth of dopamine neurons and their spontaneous death, two major goals of regenerative medicine.


Asunto(s)
Envejecimiento/fisiología , Dopamina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Parto/metabolismo , Animales , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Factor Nuclear 3-beta del Hepatocito/deficiencia , Factor Nuclear 3-beta del Hepatocito/genética , Ratones , Ratones Noqueados , Degeneración Nerviosa/genética , Parto/genética
14.
Nat Biotechnol ; 25(7): 803-16, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17572666

RESUMEN

The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue-nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.


Asunto(s)
Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Fosfatasa Alcalina/metabolismo , Antígenos CD/biosíntesis , Biotecnología/métodos , Diferenciación Celular , Linaje de la Célula , Membrana Celular/metabolismo , Células Cultivadas , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Genotipo , Glucolípidos/química , Humanos , Glicoproteínas de Membrana/biosíntesis , Tetraspanina 29
15.
PLoS Genet ; 3(8): e136, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17708682

RESUMEN

The identification of regulatory elements from different cell types is necessary for understanding the mechanisms controlling cell type-specific and housekeeping gene expression. Mapping DNaseI hypersensitive (HS) sites is an accurate method for identifying the location of functional regulatory elements. We used a high throughput method called DNase-chip to identify 3,904 DNaseI HS sites from six cell types across 1% of the human genome. A significant number (22%) of DNaseI HS sites from each cell type are ubiquitously present among all cell types studied. Surprisingly, nearly all of these ubiquitous DNaseI HS sites correspond to either promoters or insulator elements: 86% of them are located near annotated transcription start sites and 10% are bound by CTCF, a protein with known enhancer-blocking insulator activity. We also identified a large number of DNaseI HS sites that are cell type specific (only present in one cell type); these regions are enriched for enhancer elements and correlate with cell type-specific gene expression as well as cell type-specific histone modifications. Finally, we found that approximately 8% of the genome overlaps a DNaseI HS site in at least one the six cell lines studied, indicating that a significant percentage of the genome is potentially functional.


Asunto(s)
Cromatina/química , Genoma Humano , Especificidad de Órganos/genética , Elementos Reguladores de la Transcripción , Secuencia de Bases , Sitios de Unión , Factor de Unión a CCCTC , Linaje de la Célula/genética , Células Cultivadas , Mapeo Cromosómico , Análisis por Conglomerados , Islas de CpG/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Células HeLa , Humanos , Elementos Aisladores/genética , Células K562 , Análisis por Micromatrices , Datos de Secuencia Molecular , Proteínas Represoras/metabolismo , Proyectos de Investigación , Análisis de Secuencia de ADN/métodos
16.
Nat Commun ; 11(1): 462, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974374

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are a powerful model of neural differentiation and maturation. We present a hiPSC transcriptomics resource on corticogenesis from 5 iPSC donor and 13 subclonal lines across 9 time points over 5 broad conditions: self-renewal, early neuronal differentiation, neural precursor cells (NPCs), assembled rosettes, and differentiated neuronal cells. We identify widespread changes in the expression of both individual features and global patterns of transcription. We next demonstrate that co-culturing human NPCs with rodent astrocytes results in mutually synergistic maturation, and that cell type-specific expression data can be extracted using only sequencing read alignments without cell sorting. We lastly adapt a previously generated RNA deconvolution approach to single-cell expression data to estimate the relative neuronal maturity of iPSC-derived neuronal cultures and human brain tissue. Using many public datasets, we demonstrate neuronal cultures are maturationally heterogeneous but contain subsets of neurons more mature than previously observed.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Células-Madre Neurales/fisiología , Transcriptoma , Algoritmos , Animales , Astrocitos/citología , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Cocultivo , Bases de Datos Genéticas , Regulación de la Expresión Génica , Humanos , Modelos Neurológicos , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/fisiología , Ratas
17.
Dev Cell ; 2(6): 707-12, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12062083

RESUMEN

Stem cells possess the ability to self-renew and generate multiple cell types of the tissues in which they reside. Several studies have reported transdifferentiation events between different somatic stem cells. These properties have created tremendous excitement about the prospect of using stem cells from easily accessible sources for tissue engineering. However, recently, the plasticity of stem cells has met with several strong challenges. In this meeting review, we will discuss issues surrounding reports of transdifferentiation, the molecular mechanisms that govern stem cell states, and progress toward putting stem cells to use.


Asunto(s)
Diferenciación Celular , Células Madre/fisiología , Proteínas de Pez Cebra , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas Morfogenéticas Óseas/metabolismo , Fusión Celular , Células Clonales , Proteínas de Unión al ADN/metabolismo , Proteínas Hedgehog , Células Madre Hematopoyéticas/fisiología , Células Híbridas/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Trasplante de Células Madre , Células Madre/citología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt
18.
J Cell Biol ; 161(5): 911-21, 2003 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-12796477

RESUMEN

The ability of stem cells to generate distinct fates is critical for the generation of cellular diversity during development. Central nervous system (CNS) stem cells respond to bone morphogenetic protein (BMP) 4 by differentiating into a wide variety of dorsal CNS and neural crest cell types. We show that distinct mechanisms are responsible for the generation of two of these cell types, smooth muscle and glia. Smooth muscle differentiation requires BMP-mediated Smad1/5/8 activation and predominates where local cell density is low. In contrast, glial differentiation predominates at high local densities in response to BMP4 and is specifically blocked by a dominant-negative mutant Stat3. Upon BMP4 treatment, the serine-threonine kinase FKBP12/rapamycin-associated protein (FRAP), mammalian target of rapamycin (mTOR), associates with Stat3 and facilitates STAT activation. Inhibition of FRAP prevents STAT activation and glial differentiation. Thus, glial differentiation by BMP4 occurs by a novel pathway mediated by FRAP and STAT proteins. These results suggest that a single ligand can regulate cell fate by activating distinct cytoplasmic signals.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Proteínas de Unión al ADN/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Células Madre/metabolismo , Transactivadores/metabolismo , Animales , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Células Cultivadas , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/farmacología , Proteínas de Unión al ADN/genética , Feto , Ratones , Músculo Liso/citología , Músculo Liso/embriología , Músculo Liso/metabolismo , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo , Ratas , Factor de Transcripción STAT1 , Factor de Transcripción STAT3 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología , Proteínas Smad , Proteína Smad1 , Células Madre/citología , Células Madre/efectos de los fármacos , Serina-Treonina Quinasas TOR , Transactivadores/genética
19.
Differentiation ; 76(4): 348-56, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18021260

RESUMEN

In eukaryotic cells, covalent modifications to core histones contribute to the establishment and maintenance of cellular phenotype via regulation of gene expression. Histone acetyltransferases (HATs) cooperate with histone deacetylases (HDACs) to establish and maintain specific patterns of histone acetylation. HDAC inhibitors can cause pluripotent stem cells to cease proliferating and enter terminal differentiation pathways in culture. To better define the roles of individual HDACs in stem cell differentiation, we have constructed "dominant-negative" stem cell lines expressing mutant, Flag-tagged HDACs with reduced enzymatic activity. Replacement of a single residue (His-->Ala) in the catalytic center reduced the activity of HDACs 1 and 2 by 80%, and abolished HDAC3 activity; the mutant HDACs were expressed at similar levels and in the same multiprotein complexes as wild-type HDACs. Hexamethylene bisacetamide-induced MEL cell differentiation was potentiated by the individual mutant HDACs, but only to 2%, versus 60% for an HDAC inhibitor, sodium butyrate, suggesting that inhibition of multiple HDACs is required for full potentiation. Cultured E14.5 cortical stem cells differentiate to neurons, astrocytes, and oligodendrocytes upon withdrawal of basic fibroblast growth factor. Transduction of stem cells with mutant HDACs 1, 2, or 3 shifted cell fate choice toward oligodendrocytes. Mutant HDAC2 also increased differentiation to astrocytes, while mutant HDAC1 reduced differentiation to neurons by 50%. These results indicate that HDAC activity inhibits differentiation to oligodendrocytes, and that HDAC2 activity specifically inhibits differentiation to astrocytes, while HDAC1 activity is required for differentiation to neurons.


Asunto(s)
Diferenciación Celular/fisiología , Histona Desacetilasas/fisiología , Isoenzimas/fisiología , Células Madre Pluripotentes/citología , Animales , Dominio Catalítico , Separación Celular , ADN Complementario , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Humanos , Inmunohistoquímica , Ratones , Mutagénesis , Transducción Genética , Células Tumorales Cultivadas
20.
Curr Opin Genet Dev ; 12(4): 478-87, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12100896

RESUMEN

A complex orchestration of stem-cell specification, expansion and differentiation is required for the proper development of the nervous system. Although progress has been made on the role of individual genes in each of these processes, there are still unresolved questions about how gene function translates to the dynamic assembly of cells into tissues. Recently, stem-cell biology has emerged as a bridge between the traditional fields of cell biology and developmental genetics. In addition to their potential therapeutic role, stem cells are being exploited as experimental 'logic chips' that integrate information and exhibit self-organizing properties. Recent studies provide new insights on how morphogenic signals coordinate major stem cell decisions to regulate the size, shape and cellular diversity of the nervous system.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso/embriología , Transducción de Señal/fisiología , Células Madre/fisiología , Animales , Apoptosis/fisiología , Proteínas de la Membrana/fisiología , Sistema Nervioso/citología , Receptores Notch , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA