Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 33(6): 1087-1104, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35236775

RESUMEN

BACKGROUND: Upregulation of cAMP-dependent and cAMP-independent PKA signaling is thought to promote cystogenesis in polycystic kidney disease (PKD). PKA-I regulatory subunit RIα is increased in kidneys of orthologous mouse models. Kidney-specific knockout of RIα upregulates PKA activity, induces cystic disease in wild-type mice, and aggravates it in Pkd1RC/RC mice. METHODS: PKA-I activation or inhibition was compared with EPAC activation or PKA-II inhibition using Pkd1RC/RC metanephric organ cultures. The effect of constitutive PKA (preferentially PKA-I) downregulation in vivo was ascertained by kidney-specific expression of a dominant negative RIαB allele in Pkd1RC/RC mice obtained by crossing Prkar1αR1αB/WT, Pkd1RC/RC , and Pkhd1-Cre mice (C57BL/6 background). The effect of pharmacologic PKA inhibition using a novel, selective PRKACA inhibitor (BLU2864) was tested in mIMCD3 3D cultures, metanephric organ cultures, and Pkd1RC/RC mice on a C57BL/6 × 129S6/Sv F1 background. Mice were sacrificed at 16 weeks of age. RESULTS: PKA-I activation promoted and inhibition prevented ex vivo P-Ser133 CREB expression and cystogenesis. EPAC activation or PKA-II inhibition had no or only minor effects. BLU2864 inhibited in vitro mIMCD3 cystogenesis and ex vivo P-Ser133 CREB expression and cystogenesis. Genetic downregulation of PKA activity and BLU2864 directly and/or indirectly inhibited many pro-proliferative pathways and were both protective in vivo. BLU2864 had no detectable on- or off-target adverse effects. CONCLUSIONS: PKA-I is the main PKA isozyme promoting cystogenesis. Direct PKA inhibition may be an effective strategy to treat PKD and other conditions where PKA signaling is upregulated. By acting directly on PKA, the inhibition may be more effective than or substantially increase the efficacy of treatments that only affect PKA activity by lowering cAMP.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Riñón Poliquístico Autosómico Recesivo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/farmacología , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante/metabolismo , Receptores de Superficie Celular/genética , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
2.
Nat Immunol ; 10(4): 420-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19234474

RESUMEN

Immunoglobulin class-switch recombination (CSR) requires activation-induced cytidine deaminase (AID). Deamination of DNA by AID in transcribed switch (S) regions leads to double-stranded breaks in DNA that serve as obligatory CSR intermediates. Here we demonstrate that the catalytic and regulatory subunits of protein kinase A (PKA) were specifically recruited to S regions to promote the localized phosphorylation of AID, which led to binding of replication protein A and subsequent propagation of the CSR cascade. Accordingly, inactivation of PKA resulted in considerable disruption of CSR because of decreased AID phosphorylation and recruitment of replication protein A to S regions. We propose that PKA nucleates the formation of active AID complexes specifically on S regions to generate the high density of DNA lesions required for CSR.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/inmunología , Citidina Desaminasa/inmunología , Cambio de Clase de Inmunoglobulina , Recombinación Genética/inmunología , Proteína de Replicación A/inmunología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Roturas del ADN de Doble Cadena , Ratones , Ratones Mutantes , Fosforilación , Unión Proteica , Infecciones por Retroviridae/inmunología
3.
J Neurosci ; 38(38): 8233-8242, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30093535

RESUMEN

Mitochondrial fission and fusion impact numerous cellular functions and neurons are particularly sensitive to perturbations in mitochondrial dynamics. Here we describe that male mice lacking the mitochondrial A-kinase anchoring protein 1 (AKAP1) exhibit increased sensitivity in the transient middle cerebral artery occlusion model of focal ischemia. At the ultrastructural level, AKAP1-/- mice have smaller mitochondria and increased contacts between mitochondria and the endoplasmic reticulum in the brain. Mechanistically, deletion of AKAP1 dysregulates complex II of the electron transport chain, increases superoxide production, and impairs Ca2+ homeostasis in neurons subjected to excitotoxic glutamate. Ca2+ deregulation in neurons lacking AKAP1 can be attributed to loss of inhibitory phosphorylation of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) at the protein kinase A (PKA) site Ser637. Our results indicate that inhibition of Drp1-dependent mitochondrial fission by the outer mitochondrial AKAP1/PKA complex protects neurons from ischemic stroke by maintaining respiratory chain activity, inhibiting superoxide production, and delaying Ca2+ deregulation. They also provide the first genetic evidence that Drp1 inhibition may be of therapeutic relevance for the treatment of stroke and neurodegeneration.SIGNIFICANCE STATEMENT Previous work suggests that activation of dynamin-related protein 1 (Drp1) and mitochondrial fission contribute to ischemic injury in the brain. However, the specificity and efficacy of the pharmacological Drp1 inhibitor mdivi-1 that was used has now been discredited by several high-profile studies. Our report is timely and highly impactful because it provides the first evidence that genetic disinhibition of Drp1 via knock-out of the mitochondrial protein kinase A (PKA) scaffold AKAP1 exacerbates stroke injury in mice. Mechanistically, we show that electron transport deficiency, increased superoxide production, and Ca2+ overload result from genetic disinhibition of Drp1. In summary, our work settles current controversies regarding the role of mitochondrial fission in neuronal injury, provides mechanisms, and suggests that fission inhibitors hold promise as future therapeutic agents.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Isquemia Encefálica/metabolismo , Dinaminas/metabolismo , Dinámicas Mitocondriales/fisiología , Accidente Cerebrovascular/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Isquemia Encefálica/genética , Calcio/metabolismo , Dinaminas/genética , Complejo II de Transporte de Electrones/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Fosforilación , Accidente Cerebrovascular/genética , Superóxidos/metabolismo
4.
Am J Hum Genet ; 94(5): 649-61, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24726472

RESUMEN

Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1.


Asunto(s)
Discapacidad Intelectual/genética , Trastornos Mentales/genética , Proteínas Nucleares/genética , Trastornos del Habla/genética , Secuencia de Aminoácidos , Animales , Niño , Estudios de Cohortes , Análisis Mutacional de ADN , Proteínas de Unión al ADN , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína/genética , Factores de Transcripción
5.
J Neurosci ; 35(14): 5549-56, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25855171

RESUMEN

Hypothalamic neuronal populations are central regulators of energy homeostasis and reproductive function. However, the ontogeny of these critical hypothalamic neuronal populations is largely unknown. We developed a novel approach to examine the developmental pathways that link specific subtypes of neurons by combining embryonic and adult ribosome-tagging strategies in mice. This new method shows that Pomc-expressing precursors not only differentiate into discrete neuronal populations that mediate energy balance (POMC and AgRP neurons), but also into neurons critical for puberty onset and the regulation of reproductive function (Kiss1 neurons). These results demonstrate a developmental link between nutrient-sensing and reproductive neuropeptide synthesizing neuronal populations and suggest a potential pathway that could link maternal nutrition to reproductive development in the offspring.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Hipotálamo/citología , Kisspeptinas/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Células Madre/fisiología , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Dependovirus/genética , Embrión de Mamíferos , Vectores Genéticos/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , Kisspeptinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis por Micromatrices , Proopiomelanocortina/genética , ARN Mensajero/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
6.
Pediatr Res ; 80(1): 110-8, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27027723

RESUMEN

BACKGROUND: Fibrolamellar hepatocellular carcinoma (FL-HCC) affects children without underlying liver disease. A consistent mutation in FL-HCCs leads to fusion of the genes encoding a heat shock protein (DNAJB1) and the catalytic subunit of protein kinase A (PRKACA). We sought to characterize the resultant chimeric protein and its effects in FL-HCC. METHODS: The expression pattern and subcellular localization of protein kinase A (PKA) subunits in FL-HCCs were compared to paired normal livers by quantitative polymerase chain reaction (qPCR), immunoblotting, and immunofluorescence. PKA activity was measured by radioactive kinase assay, and we determined whether the FL-HCC mutation is present in other primary liver tumors. RESULTS: The fusion transcript and chimeric protein were detected exclusively in FL-HCCs. DNAJB1-PRKACA was expressed 10-fold higher than the wild-type PRKACA transcript, resulting in overexpression of the mutant protein in tumors. Consequently, FL-HCCs possess elevated cAMP-stimulated PKA activity compared to normal livers, despite similar Kms between the mutant and wild-type kinases. CONCLUSION: FL-HCCs in children and young adults uniquely overexpress DNAJB1-PRKACA, which results in elevated cAMP-dependent PKA activity. These data suggest that aberrant PKA signaling contributes to liver tumorigenesis.


Asunto(s)
8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , Carcinoma Hepatocelular/enzimología , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Neoplasias Hepáticas/enzimología , Mutación , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Carcinoma Hepatocelular/genética , Dominio Catalítico , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/genética , Metástasis Linfática , Recurrencia Local de Neoplasia
7.
Proc Natl Acad Sci U S A ; 110(36): 14765-70, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23964123

RESUMEN

Diphtheria toxin-mediated, acute ablation of hypothalamic neurons expressing agouti-related protein (AgRP) in adult mice leads to anorexia and starvation within 7 d that is caused by hyperactivity of neurons within the parabrachial nucleus (PBN). Because NMDA glutamate receptors are involved in various synaptic plasticity-based behavioral modifications, we hypothesized that modulation of the NR2A and NR2B subunits of the NMDA receptor in PBN neurons could contribute to the anorexia phenotype. We observed by Western blot analyses that ablation of AgRP neurons results in enhanced expression of NR2B along with a modest suppression of NR2A. Interestingly, systemic administration of LiCl in a critical time window before AgRP neuron ablation abolished the anorectic response. LiCl treatment suppressed NR2B levels in the PBN and ameliorated the local Fos induction that is associated with anorexia. This protective role of LiCl on feeding was blunted in vagotomized mice. Chronic infusion of RO25-6981, a selective NR2B inhibitor, into the PBN recapitulated the role of LiCl in maintaining feeding after AgRP neuron ablation. We suggest that the accumulation of NR2B subunits in the PBN contributes to aphagia in response to AgRP neuron ablation and may be involved in other forms of anorexia.


Asunto(s)
Apetito/fisiología , Neuronas/fisiología , Puente/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Adyuvantes Inmunológicos/farmacología , Proteína Relacionada con Agouti/deficiencia , Proteína Relacionada con Agouti/genética , Animales , Anorexia/genética , Anorexia/fisiopatología , Anorexia/prevención & control , Apetito/efectos de los fármacos , Western Blotting , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Trastornos de Deglución/genética , Trastornos de Deglución/fisiopatología , Trastornos de Deglución/prevención & control , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Cloruro de Litio/farmacología , Masculino , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenoles , Piperidinas/farmacología , Puente/citología , Puente/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Rombencéfalo/citología , Rombencéfalo/metabolismo , Rombencéfalo/fisiología , Factores de Tiempo , Vagotomía
8.
Proc Natl Acad Sci U S A ; 110(17): E1631-40, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23569242

RESUMEN

Targeted disruption of RIIß-protein kinase A (PKA) in mice leads to a lean phenotype, increased nocturnal locomotor activity, and activation of brown adipose tissue. Because RIIß is abundantly expressed in both white and brown adipose tissue as well as the brain, the contribution of neuronal vs. peripheral PKA to these phenotypes was investigated. We used a Cre-Lox strategy to reexpress RIIß in a tissue-specific manner in either adipocytes or neurons. Mice with adipocyte-specific RIIß reexpression remained hyperactive and lean, but pan-neuronal RIIß reexpression reversed both phenotypes. Selective RIIß reexpression in all striatal medium spiny neurons with Darpp32-Cre corrected the hyperlocomotor phenotype, but the mice remained lean. Further analysis revealed that RIIß reexpression in D2 dopamine receptor-expressing medium spiny neurons corrected the hyperlocomotor phenotype, which demonstrated that the lean phenotype in RIIß-PKA-deficient mice does not develop because of increased locomotor activity. To identify the neurons responsible for the lean phenotype, we used specific Cre-driver mice to reexpress RIIß in agouti-related peptide (AgRP)-, proopiomelanocortin (POMC)-, single-minded 1 (Sim1)-, or steroidogenic factor 1 (SF1)-expressing neurons in the hypothalamus, but observed no rescue of the lean phenotype. However, when RIIß was reexpressed in multiple regions of the hypothalamus and striatum driven by Rip2-Cre, or specifically in GABAergic neurons driven by Vgat-ires-Cre, both the hyperactive and lean phenotypes were completely corrected. Bilateral injection of adeno-associated virus1 (AAV1)-Cre directly into the hypothalamus caused reexpression of RIIß and partially reversed the lean phenotype. These data demonstrate that RIIß-PKA deficiency in a subset of hypothalamic GABAergic neurons leads to the lean phenotype.


Asunto(s)
Adiposidad/genética , Encéfalo/metabolismo , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Metabolismo Energético/fisiología , Homeostasis/fisiología , Locomoción/fisiología , Neuronas/metabolismo , Análisis de Varianza , Animales , Western Blotting , Peso Corporal/genética , Calorimetría Indirecta , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Genotipo , Inmunohistoquímica , Integrasas/metabolismo , Leptina/sangre , Ratones , Ratones Noqueados , Neuronas/fisiología , Reacción en Cadena de la Polimerasa , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
9.
J Neurosci ; 34(14): 4896-904, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24695708

RESUMEN

Striatal medium spiny neurons (MSNs) mediate many of the physiological effects of dopamine, including the regulation of feeding and motor behaviors. Dopaminergic inputs from the midbrain modulate MSN excitability through pathways that involve cAMP and protein kinase A (PKA), but the physiological role of specific PKA isoforms in MSN neurons remains poorly understood. One of the major PKA regulatory (R) subunit isoforms expressed in MSNs is RIIß, which localizes the PKA holoenzyme primarily to dendrites by interaction with AKAP5 and other scaffolding proteins. However, RI (RIα and RIß) subunits are also expressed in MSNs and the RI holoenzyme has a weaker affinity for most scaffolding proteins and tends to localize in the cell body. We generated mice with selective expression of a dominant-negative RI subunit (RIαB) in striatal MSNs and show that this dominant-negative RIαB localizes to the cytoplasm and specifically inhibits type I PKA activity in the striatum. These mice are normal at birth; however, soon after weaning they exhibit growth retardation and the adult mice are hypophagic, lean, and resistant to high-fat diet-induced hyperphagia and obesity. The RIαB-expressing mice also exhibit decreased locomotor activity and decreased dopamine-regulated CREB phosphorylation and c-fos gene expression in the striatum. Our results demonstrate a critical role for cytoplasmic RI-PKA holoenzyme in gene regulation and the overall physiological function of MSNs.


Asunto(s)
Cuerpo Estriado/citología , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Conducta Alimentaria/fisiología , Regulación de la Expresión Génica/fisiología , Actividad Motora/fisiología , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Peso Corporal/genética , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Dopaminérgicos/farmacología , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Regulación de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Trastornos del Movimiento/genética , Mutación/genética , Obesidad/dietoterapia , Obesidad/genética
10.
Am J Physiol Renal Physiol ; 308(6): F627-38, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25587115

RESUMEN

PKA plays a critical role in water excretion through regulation of the production and action of the antidiuretic hormone arginine vasopressin (AVP). The AVP prohormone is produced in the hypothalamus, where its transcription is regulated by cAMP. Once released into the circulation, AVP stimulates antidiuresis through activation of vasopressin 2 receptors in renal principal cells. Vasopressin 2 receptor activation increases cAMP and activates PKA, which, in turn, phosphorylates aquaporin (AQP)2, triggering apical membrane accumulation, increased collecting duct permeability, and water reabsorption. We used single-minded homolog 1 (Sim1)-Cre recombinase-mediated expression of a dominant negative PKA regulatory subunit (RIαB) to disrupt kinase activity in vivo and assess the role of PKA in fluid homeostasis. RIαB expression gave rise to marked polydipsia and polyuria; however, neither hypothalamic Avp mRNA expression nor urinary AVP levels were attenuated, indicating a primary physiological effect on the kidney. RIαB mice displayed a marked deficit in urinary concentrating ability and greatly reduced levels of AQP2 and phospho-AQP2. Dehydration induced Aqp2 mRNA in the kidney of both control and RIαB-expressing mice, but AQP2 protein levels were still reduced in RIαB-expressing mutants, and mice were unable to fully concentrate their urine and conserve water. We conclude that partial PKA inhibition in the kidney leads to posttranslational effects that reduce AQP2 protein levels and interfere with apical membrane localization. These findings demonstrate a distinct physiological role for PKA signaling in both short- and long-term regulation of AQP2 and characterize a novel mouse model of diabetes insipidus.


Asunto(s)
Acuaporina 2/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Diabetes Insípida/etiología , Animales , Arginina Vasopresina/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Hipotálamo/metabolismo , Riñón/metabolismo , Ratones , Ratones Transgénicos , Fenotipo , Receptores de Vasopresinas/metabolismo , Equilibrio Hidroelectrolítico
11.
Proc Natl Acad Sci U S A ; 109(42): 17099-104, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23035250

RESUMEN

Protein kinase A (PKA) is activated during sympathetic stimulation of the heart and phosphorylates key proteins involved in cardiac Ca(2+) handling, including the L-type Ca(2+) channel (Ca(V)1.2) and phospholamban (PLN). This results in acceleration and amplification of the beat-to-beat changes in cytosolic Ca(2+) in cardiomyocytes and, in turn, an increased rate and force of contraction. PKA is held in proximity to its substrates by protein scaffolds called A kinase anchoring proteins (AKAPs). It has been suggested that the short and long isoforms of AKAP7 (also called AKAP15/18) localize PKA in complexes with Ca(V)1.2 and PLN, respectively. We generated an AKAP7 KO mouse in which all isoforms were deleted and tested whether Ca(2+) current, intracellular Ca(2+) concentration, or Ca(2+) reuptake were impaired in isolated adult ventricular cardiomyocytes following stimulation with the ß-adrenergic agonist isoproterenol. KO cardiomyocytes responded normally to adrenergic stimulation, as measured by whole-cell patch clamp or a fluorescent intracellular Ca(2+) indicator. Phosphorylation of Ca(V)1.2 and PLN were also unaffected by genetic deletion of AKAP7. Immunoblot and RT-PCR revealed that only the long isoforms of AKAP7 were detectable in ventricular cardiomyocytes. The results indicate that AKAP7 is not required for regulation of Ca(2+) handling in mouse cardiomyocytes.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Agonistas Adrenérgicos beta/farmacología , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Isoproterenol/farmacología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/efectos de los fármacos , Proteínas de Anclaje a la Quinasa A/genética , Animales , Southern Blotting , Cartilla de ADN/genética , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Fosforilación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Nat Cell Biol ; 9(4): 415-21, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17369818

RESUMEN

A-kinase anchoring proteins (AKAPs) control the localization and substrate specificity of cAMP-dependent protein kinase (PKA), tetramers of regulatory (PKA-R) and catalytic (PKA-C) subunits, by binding to PKA-R subunits. Most mammalian AKAPs bind Type II PKA through PKA-RII (ref. 2), whereas dual specificity AKAPs bind both PKA-RI and PKA-RII (ref. 3). Inhibition of PKA-AKAP interactions modulates PKA signalling. Localized PKA activation in pseudopodia of migrating cells phosphorylates alpha4 integrins to provide spatial cues governing cell motility. Here, we report that the alpha4 cytoplasmic domain is a Type I PKA-specific AKAP that is distinct from canonical AKAPs in two ways: the alpha4 interaction requires the PKA holoenzyme, and is insensitive to amphipathic peptides that disrupt most PKA-AKAP interactions. We exploited type-specific PKA anchoring peptides to create genetically encoded baits that sequester specific PKA isoforms to the mitochondria and found that mislocalization of Type I, but not Type II, PKA disrupts alpha4 phosphorylation and markedly inhibits the velocity and directional persistence of cell migration.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Integrina alfa4/metabolismo , Animales , Western Blotting , Células CHO , Movimiento Celular , Células Cultivadas , Cromatografía de Afinidad , Cricetinae , Cricetulus , Proteína Quinasa Tipo II Dependiente de AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Perros , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación , Integrina alfa4/genética , Integrina alfa4beta1/genética , Integrina alfa4beta1/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Fosforilación , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
13.
Blood ; 117(19): 5189-97, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21415270

RESUMEN

MicroRNAs (miRNAs) regulate cell physiology by altering protein expression, but the biology of platelet miRNAs is largely unexplored. We tested whether platelet miRNA levels were associated with platelet reactivity by genome-wide profiling using platelet RNA from 19 healthy subjects. We found that human platelets express 284 miRNAs. Unsupervised hierarchical clustering of miRNA profiles resulted in 2 groups of subjects that appeared to cluster by platelet aggregation phenotypes. Seventy-four miRNAs were differentially expressed (DE) between subjects grouped according to platelet aggregation to epinephrine, a subset of which predicted the platelet reactivity response. Using whole genome mRNA expression data on these same subjects, we computationally generated a high-priority list of miRNA-mRNA pairs in which the DE platelet miRNAs had binding sites in 3'-untranslated regions of DE mRNAs, and the levels were negatively correlated. Three miRNA-mRNA pairs (miR-200b:PRKAR2B, miR-495:KLHL5, and miR-107:CLOCK) were selected from this list, and all 3 miRNAs knocked down protein expression from the target mRNA. Reduced activation from platelets lacking PRKAR2B supported these findings. In summary, (1) platelet miRNAs are able to repress expression of platelet proteins, (2) miRNA profiles are associated with and may predict platelet reactivity, and (3) bioinformatic approaches can successfully identify functional miRNAs in platelets.


Asunto(s)
Plaquetas/metabolismo , Perfilación de la Expresión Génica , MicroARNs/análisis , Activación Plaquetaria/genética , ARN Mensajero/análisis , Análisis por Conglomerados , Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
14.
Circ Res ; 107(6): 747-56, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20671242

RESUMEN

RATIONALE: Sympathetic stimulation of the heart increases the force of contraction and rate of ventricular relaxation by triggering protein kinase (PK)A-dependent phosphorylation of proteins that regulate intracellular calcium. We hypothesized that scaffolding of cAMP signaling complexes by AKAP5 is required for efficient sympathetic stimulation of calcium transients. OBJECTIVE: We examined the function of AKAP5 in the ß-adrenergic signaling cascade. METHODS AND RESULTS: We used calcium imaging and electrophysiology to examine the sympathetic response of cardiomyocytes isolated from wild type and AKAP5 mutant animals. The ß-adrenergic regulation of calcium transients and the phosphorylation of substrates involved in calcium handling were disrupted in AKAP5 knockout cardiomyocytes. The scaffolding protein, AKAP5 (also called AKAP150/79), targets adenylyl cyclase, PKA, and calcineurin to a caveolin 3-associated complex in ventricular myocytes that also binds a unique subpopulation of Ca(v)1.2 L-type calcium channels. Only the caveolin 3-associated Ca(v)1.2 channels are phosphorylated by PKA in response to sympathetic stimulation in wild-type heart. However, in the AKAP5 knockout heart, the organization of this signaling complex is disrupted, adenylyl cyclase 5/6 no longer associates with caveolin 3 in the T-tubules, and noncaveolin 3-associated calcium channels become phosphorylated after ß-adrenergic stimulation, although this does not lead to an enhanced calcium transient. The signaling domain created by AKAP5 is also essential for the PKA-dependent phosphorylation of ryanodine receptors and phospholamban. CONCLUSIONS: These findings identify an AKAP5-organized signaling module that is associated with caveolin 3 and is essential for sympathetic stimulation of the calcium transient in adult heart cells.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Canales de Calcio Tipo L/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/fisiología , Sistema Nervioso Simpático/fisiología , Proteínas de Anclaje a la Quinasa A/fisiología , Factores de Edad , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Isoproterenol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo
15.
Proc Natl Acad Sci U S A ; 106(33): 13939-44, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19666516

RESUMEN

Gene profiling techniques allow the assay of transcripts from organs, tissues, and cells with an unprecedented level of coverage. However, most of these approaches are still limited by the fact that organs and tissues are composed of multiple cell types that are each unique in their patterns of gene expression. To identify the transcriptome from a single cell type in a complex tissue, investigators have relied upon physical methods to separate cell types or in situ hybridization and immunohistochemistry. Here, we describe a strategy to rapidly and efficiently isolate ribosome-associated mRNA transcripts from any cell type in vivo. We have created a mouse line, called RiboTag, which carries an Rpl22 allele with a floxed wild-type C-terminal exon followed by an identical C-terminal exon that has three copies of the hemagglutinin (HA) epitope inserted before the stop codon. When the RiboTag mouse is crossed to a cell-type-specific Cre recombinase-expressing mouse, Cre recombinase activates the expression of epitope-tagged ribosomal protein RPL22(HA), which is incorporated into actively translating polyribosomes. Immunoprecipitation of polysomes with a monoclonal antibody against HA yields ribosome-associated mRNA transcripts from specific cell types. We demonstrate the application of this technique in brain using neuron-specific Cre recombinase-expressing mice and in testis using a Sertoli cell Cre recombinase-expressing mouse.


Asunto(s)
Técnicas Genéticas , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Epítopos , Exones , Hemaglutininas/química , Integrasas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Células de Sertoli/metabolismo
16.
Elife ; 112022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36317965

RESUMEN

The parabrachial nucleus (PBN) is a major hub that receives sensory information from both internal and external environments. Specific populations of PBN neurons are involved in behaviors including food and water intake, nociceptive responses, breathing regulation, as well as learning and responding appropriately to threatening stimuli. However, it is unclear how many PBN neuron populations exist and how different behaviors may be encoded by unique signaling molecules or receptors. Here we provide a repository of data on the molecular identity, spatial location, and projection patterns of dozens of PBN neuron subclusters. Using single-cell RNA sequencing, we identified 21 subclusters of neurons in the PBN and neighboring regions. Multiplexed in situ hybridization showed many of these subclusters are enriched within specific PBN subregions with scattered cells in several other regions. We also provide detailed visualization of the axonal projections from 21 Cre-driver lines of mice. These results are all publicly available for download and provide a foundation for further interrogation of PBN functions and connections.


Asunto(s)
Núcleos Parabraquiales , Animales , Ratones , Neuronas , Axones
17.
Cell Rep ; 40(2): 111073, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35830806

RESUMEN

Mutations in the catalytic subunit of protein kinase A (PKAc) drive the stress hormone disorder adrenal Cushing's syndrome. We define mechanisms of action for the PKAc-L205R and W196R variants. Proximity proteomic techniques demonstrate that both Cushing's mutants are excluded from A kinase-anchoring protein (AKAP)-signaling islands, whereas live-cell photoactivation microscopy reveals that these kinase mutants indiscriminately diffuse throughout the cell. Only cAMP analog drugs that displace native PKAc from AKAPs enhance cortisol release. Rescue experiments that incorporate PKAc mutants into AKAP complexes abolish cortisol overproduction, indicating that kinase anchoring restores normal endocrine function. Analyses of adrenal-specific PKAc-W196R knockin mice and Cushing's syndrome patient tissue reveal defective signaling mechanisms of the disease. Surprisingly each Cushing's mutant engages a different mitogenic-signaling pathway, with upregulation of YAP/TAZ by PKAc-L205R and ERK kinase activation by PKAc-W196R. Thus, aberrant spatiotemporal regulation of each Cushing's variant promotes the transmission of distinct downstream pathogenic signals.


Asunto(s)
Síndrome de Cushing , Animales , Dominio Catalítico/genética , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hidrocortisona/metabolismo , Ratones , Proteómica
18.
EMBO J ; 26(23): 4879-90, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-17972919

RESUMEN

Association of PKA with the AMPA receptor GluR1 subunit via the A kinase anchor protein AKAP150 is crucial for GluR1 phosphorylation. Mutating the AKAP150 gene to specifically prevent PKA binding reduced PKA within postsynaptic densities (>70%). It abolished hippocampal LTP in 7-12 but not 4-week-old mice. Inhibitors of PKA and of GluR2-lacking AMPA receptors blocked single tetanus LTP in hippocampal slices of 8 but not 4-week-old WT mice. Inhibitors of GluR2-lacking AMPA receptors also prevented LTP in 2 but not 3-week-old mice. Other studies demonstrate that GluR1 homomeric AMPA receptors are the main GluR2-lacking AMPA receptors in adult hippocampus and require PKA for their functional postsynaptic expression during potentiation. AKAP150-anchored PKA might thus critically contribute to LTP in adult hippocampus in part by phosphorylating GluR1 to foster postsynaptic accumulation of homomeric GluR1 AMPA receptors during initial LTP in 8-week-old mice.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Potenciación a Largo Plazo , Receptores AMPA/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Envejecimiento , Animales , Calcio/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Sinapsis/metabolismo , Factores de Tiempo
19.
Proc Natl Acad Sci U S A ; 105(1): 276-81, 2008 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-18172198

RESUMEN

Agouti lethal yellow (A(y)) mice express agouti ectopically because of a genetic rearrangement at the agouti locus. The agouti peptide is a potent antagonist of the melanocortin 4 receptor (MC4R) expressed in neurons, and this leads to hyperphagia, hypoactivity, and increased fat mass. The MC4R signals through Gs and is thought to stimulate the production of cAMP and activation of downstream cAMP effector molecules such as PKA. Disruption of the RIIbeta regulatory subunit gene of PKA results in release of the active catalytic subunit and an increase in basal PKA activity in cells where RIIbeta is highly expressed. Because RIIbeta is expressed in neurons including those in the hypothalamic nuclei where MC4R is prominent we tested the possibility that the RIIbeta knockout might rescue the body weight phenotypes of the A(y) mice. Disruption of the RIIbeta PKA regulatory subunit gene in mice leads to a 50% reduction in white adipose tissue and resistance to diet-induced obesity and hyperglycemia. The RIIbeta mutation rescued the elevated body weight, hyperphagia, and obesity of A(y) mice. Partial rescue of the A(y) phenotypes was even observed on an RIIbeta heterozygote background. These results suggest that the RIIbeta gene mutation alters adiposity and locomotor activity by modifying PKA signaling pathways downstream of the agouti antagonism of MC4R in the hypothalamus.


Asunto(s)
Proteína Quinasa Tipo II Dependiente de AMP Cíclico/genética , Proteína Quinasa Tipo II Dependiente de AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/química , Regulación de la Expresión Génica , Obesidad/genética , Obesidad/terapia , Tejido Adiposo/metabolismo , Animales , Peso Corporal , Modelos Animales de Enfermedad , Heterocigoto , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Actividad Motora , Fenotipo , Receptor de Melanocortina Tipo 4/metabolismo
20.
Proc Natl Acad Sci U S A ; 105(52): 20740-5, 2008 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-19074277

RESUMEN

Studies on cAMP signaling and protein kinase A (PKA) function in vivo are limited by the lack of highly specific inhibitors that can be used in primary cell culture and whole animals. Previously we reported that a mutation in the ATP binding pocket of a catalytic subunit (Calpha) of PKA confers sensitivity to the pyrazolo[3,4-d]pyrimidine inhibitor, 1NM-PP1. We have now engineered the mouse Pkraca gene such that after Cre-mediated recombination in vivo, the CalphaM120A mutant protein is expressed and the wild-type Calpha is turned off. We demonstrate the utility of this approach by examining the requirement for PKA activity during capacitation of sperm from mice that express CalphaM120A mutant protein. For CalphaM120A sperm, 10 microM of 1NM-PP1 prevented PKA-dependent phosphorylation and the activation of motility that are both rapidly (<90 s) evoked by the HCO(3)(-) anion. A continuous (90 min) inhibition with 10 microM of 1NM-PP1 prevented the protein tyrosine phosphorylation of late-stage capacitation. Delayed application of 1NM-PP1 demonstrated that PKA activity was required for at least the initial 30 min of capacitation to produce subsequent protein tyrosine phosphorylation. Acute application of 1NM-PP1 rapidly slowed the accelerated beat of activated motility but did not affect the established waveform asymmetry of hyperactivated sperm. Our results demonstrate that PKA in CalphaM120A mutant sperm is rapidly and reversibly inhibited by 1NM-PP1 and that this blockade has selective and time-dependent effects on multiple aspects of capacitation. The conditional CalphaM120A-expressing mouse lines will be valuable tools for studying PKA function in vivo.


Asunto(s)
Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/antagonistas & inhibidores , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Capacitación Espermática/efectos de los fármacos , Espermatozoides/enzimología , Animales , Sitios de Unión/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Masculino , Ratones , Ratones Transgénicos , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Capacitación Espermática/genética , Motilidad Espermática/efectos de los fármacos , Motilidad Espermática/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA