Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Neurophysiol ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356076

RESUMEN

In the rat, the activity of laryngeal adductor muscles, the crural diaphragm, and sympathetic vasomotor neurons is entrained to the post-inspiratory (post-I) phase of the respiratory cycle, a mechanism thought to enhance cardiorespiratory efficiency. The identity of the central neurons responsible for transmitting respiratory activity to these outputs remains unresolved. Here we explore the contribution of the Kölliker-Fuse/Parabrachial nuclei (KF-PBN) in the generation of post-I activity in vagal and sympathetic outputs under steady-state conditions and during acute hypoxemia, a condition that potently recruits post-I activity. In artificially ventilated, vagotomised and urethane-anesthetised rats, bilateral KF-PBN inhibition by microinjection of the GABAA receptor agonist isoguvacine evoked stereotypical responses on respiratory pattern, characterised by a reduction in phrenic nerve burst amplitude, a modest lengthening of inspiratory time, and an increase in breath-to-breath variability, while post-I vagal nerve activity was abolished and post-I sympathetic nerve activity diminished. During acute hypoxemia, KF-PBN inhibition attenuated tachypnoeic responses and completely abolished post-I vagal activity while preserving respiratory-sympathetic coupling. Furthermore, KF-PBN inhibition disrupted the decline in respiratory frequency that normally follows resumption of oxygenation. These findings suggest that the KF-PBN is a critical hub for the distribution of post-I activities to vagal and sympathetic outputs and is an important contributor to the dynamic adjustments to respiratory patterns that occur in response to acute hypoxia. While KF-PBN appears essential for post-I vagal activity, it only partially contributes to post-I sympathetic nerve activity, suggesting the contribution of multiple neural pathways to respiratory-sympathetic coupling.

2.
J Physiol ; 600(24): 5311-5332, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36271640

RESUMEN

The ability to discriminate competing external stimuli and initiate contextually appropriate behaviours is a key brain function. Neurons in the deep superior colliculus (dSC) integrate multisensory inputs and activate descending projections to premotor pathways responsible for orienting, attention and defence, behaviours which involve adjustments to respiratory and cardiovascular parameters. However, the neural pathways that subserve the physiological components of orienting are poorly understood. We report that orienting responses to optogenetic dSC stimulation are accompanied by short-latency autonomic, respiratory and electroencephalographic effects in awake rats, closely mimicking those evoked by naturalistic alerting stimuli. Physiological responses were not accompanied by detectable aversion or fear, and persisted under urethane anaesthesia, indicating independence from emotional stress. Anterograde and trans-synaptic viral tracing identified a monosynaptic pathway that links the dSC to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA), a key hub for the coordination of orienting and locomotor behaviours. In urethane-anaesthetized animals, sympathoexcitatory and cardiovascular, but not respiratory, responses to dSC stimulation were replicated by optogenetic stimulation of the dSC-GiA terminals, suggesting a likely role for this pathway in mediating the autonomic components of dSC-mediated responses. Similarly, extracellular recordings from putative GiA sympathetic premotor neurons confirmed short-latency excitatory inputs from the dSC. This pathway represents a likely substrate for autonomic components of orienting responses that are mediated by dSC neurons and suggests a mechanism through which physiological and motor components of orienting behaviours may be integrated without the involvement of higher centres that mediate affective components of defensive responses. KEY POINTS: Neurons in the deep superior colliculus (dSC) integrate multimodal sensory signals to elicit context-dependent innate behaviours that are accompanied by stereotypical cardiovascular and respiratory activities. The pathways responsible for mediating the physiological components of colliculus-mediated orienting behaviours are unknown. We show that optogenetic dSC stimulation evokes transient orienting, respiratory and autonomic effects in awake rats which persist under urethane anaesthesia. Anterograde tracing from the dSC identified projections to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA). Stimulation of this pathway recapitulated autonomic effects evoked by stimulation of dSC neurons. Electrophysiological recordings from putative GiA sympathetic premotor neurons confirmed short latency excitatory input from dSC neurons. This disynaptic dSC-GiA-spinal sympathoexcitatory pathway may underlie autonomic adjustments to salient environmental cues independent of input from higher centres.


Asunto(s)
Formación Reticular , Colículos Superiores , Animales , Ratas , Colículos Superiores/fisiología , Formación Reticular/fisiología , Sistema Nervioso Autónomo/fisiología , Neuronas/fisiología , Vías Nerviosas/fisiología , Uretano/farmacología
3.
Neuroendocrinology ; 112(12): 1200-1213, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35654013

RESUMEN

INTRODUCTION: Angiotensin (Ang) II signalling in the hypothalamic paraventricular nucleus (PVN) via Ang type-1a receptors (AT1R) regulates vasopressin release and sympathetic nerve activity - two effectors of blood pressure regulation. We determined the cellular expression and function of AT1R in the PVN of a rodent model of polycystic kidney disease (PKD), the Lewis polycystic kidney (LPK) rat, to evaluate its contribution to blood pressure regulation and augmented vasopressin release in PKD. METHODS: PVN AT1R gene expression was quantified with fluorescent in situ hybridization in LPK and control rats. PVN AT1R function was assessed with pharmacology under urethane anaesthesia in LPK and control rats instrumented to record arterial pressure and sympathetic nerve activity. RESULTS: AT1R gene expression was upregulated in the PVN, particularly in corticotrophin-releasing hormone neurons, of LPK versus control rats. PVN microinjection of Ang II produced larger increases in systolic blood pressure in LPK versus control rats (36 ± 5 vs. 17 ± 2 mm Hg; p < 0.01). Unexpectedly, Ang II produced regionally heterogeneous sympathoinhibition (renal: -33%; splanchnic: -12%; lumbar: no change) in LPK and no change in controls. PVN pre-treatment with losartan, a competitive AT1R antagonist, blocked the Ang II-mediated renal sympathoinhibition and attenuated the pressor response observed in LPK rats. The Ang II pressor effect was also blocked by systemic OPC-21268, a competitive V1A receptor antagonist, but unaffected by hexamethonium, a sympathetic ganglionic blocker. DISCUSSION/CONCLUSION: Collectively, our data suggest that upregulated AT1R expression in PVN sensitizes neuroendocrine release of vasopressin in the LPK, identifying a central mechanism for the elevated vasopressin levels present in PKD.


Asunto(s)
Núcleo Hipotalámico Paraventricular , Enfermedades Renales Poliquísticas , Ratas , Animales , Núcleo Hipotalámico Paraventricular/metabolismo , Presión Sanguínea , Roedores/genética , Roedores/metabolismo , Hibridación Fluorescente in Situ , Ratas Endogámicas Lew , Vasopresinas/metabolismo , Sistema Nervioso Simpático/metabolismo , Angiotensina II , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Riñón
4.
J Neurosci ; 39(49): 9757-9766, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31666354

RESUMEN

Breathing results from sequential recruitment of muscles in the expiratory, inspiratory, and postinspiratory (post-I) phases of the respiratory cycle. Here we investigate whether neurons in the medullary intermediate reticular nucleus (IRt) are components of a central pattern generator (CPG) that generates post-I activity in laryngeal adductors and vasomotor sympathetic nerves and interacts with other members of the central respiratory network to terminate inspiration. We first identified the region of the (male) rat IRt that contains the highest density of lightly cholinergic neurons, many of which are glutamatergic, which aligns well with the putative postinspiratory complex in the mouse (Anderson et al., 2016). Acute bilateral inhibition of this region reduced the amplitudes of post-I vagal and sympathetic nerve activities. However, although associated with reduced expiratory duration and increased respiratory frequency, IRt inhibition did not affect inspiratory duration or abolish the recruitment of post-I activity during acute hypoxemia as predicted. Rather than representing an independent CPG for post-I activity, we hypothesized that IRt neurons may instead function as a relay that distributes post-I activity generated elsewhere, and wondered whether they could be a site of integration for para-respiratory CPGs that drive the same outputs. Consistent with this idea, IRt inhibition blocked rhythmic motor and autonomic components of fictive swallow but not swallow-related apnea. Our data support a role for IRt neurons in the transmission of post-I and swallowing activity to motor and sympathetic outputs, but suggest that other mechanisms also contribute to the generation of post-I activity.SIGNIFICANCE STATEMENT Interactions between multiple coupled oscillators underlie a three-part respiratory cycle composed from inspiratory, postinspiratory (post-I), and late-expiratory phases. Central post-I activity terminates inspiration and activates laryngeal motoneurons. We investigate whether neurons in the intermediate reticular nucleus (IRt) form the central pattern generator (CPG) responsible for post-I activity. We confirm that IRt activity contributes to post-I motor and autonomic outputs, and find that IRt neurons are necessary for activation of the same outputs during swallow, but that they are not required for termination of inspiration or recruitment of post-I activity during hypoxemia. We conclude that this population may not represent a distinct CPG, but instead may function as a premotor relay that integrates activity generated by diverse respiratory and nonrespiratory CPGs.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Deglución/fisiología , Neuronas/fisiología , Mecánica Respiratoria/fisiología , Formación Reticular/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Apnea/fisiopatología , Colina O-Acetiltransferasa/fisiología , Femenino , Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Laringe/fisiología , Masculino , Ratones , Red Nerviosa/fisiología , Ratas , Nervio Vago/fisiología
5.
J Physiol ; 597(13): 3407-3423, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31077360

RESUMEN

KEY POINTS: Spinally-projecting neurons of the rostral ventrolateral medulla (RVLM) determine sympathetic outflow to different territories of the body. Previous studies suggest the existence of RVLM neurons with distinct functional classes, such as neurons that target sympathetic nerves bound for functionally-similar tissue types (e.g. muscle vasculature). The existence of RVLM neurons with more general actions had not been critically tested. Using viral tracing, we show that a significant minority of RVLM neurons send axon collaterals to disparate spinal segments (T2 and T10 ). Furthermore, optogenetic activation of sympathetic premotor neurons projecting to lumbar spinal segments also produced activation of sympathetic nerves from rostral spinal segments that innervate functionally diverse tissues (heart and forelimb muscle). These findings suggest the existence of individual RVLM neurons for which the axons branch to drive sympathetic preganglionic neurons of more than one functional class and may be able to produce global changes in sympathetic activity. ABSTRACT: We investigate the extent of spinal axon collateralization of rat rostral ventrolateral medulla (RVLM) sympathetic premotor neurons and its functional consequences. In anatomical tracing experiments, two recombinant herpes viral vectors with retrograde tropism and expressing different fluorophores were injected into the intermediolateral column at upper thoracic and lower thoracic levels. Histological analysis revealed that ∼21% of RVLM bulbospinal neurons were retrogradely labelled by both vectors, indicating substantial axonal collateralization to disparate spinal segments. In functional experiments, another virus with retrograde tropism, a canine adenovirus expressing Cre recombinase, was injected into the left intermediolateral horn around the thoracolumbar junction, whereas a Cre-dependent viral vector encoding Channelrhodopsin2 under LoxP control was injected into the ipsilateral RVLM. In subsequent terminal experiments, blue laser light (473 nm × 20 ms pulses at 10 mW) was used to activate RVLM neurons that had been transduced by both vectors. Stimulus-locked activation, at appropriate latencies, was recorded in the following pairs of sympathetic nerves: forelimb and hindlimb muscle sympathetic fibres, as well as cardiac and either hindlimb muscle or lumbar sympathetic nerves. The latter result demonstrates that axon collaterals of lumbar-projecting RVLM neurons project to, and excite, both functionally similar (forelimb and hindlimb muscle) and functionally dissimilar (lumbar and cardiac) preganglionic neurons. Taken together, these findings show that the axons of a significant proportion of RVLM neurons collateralise widely within the spinal cord, and that they may excite preganglionic neurons of more than one functional class.


Asunto(s)
Axones/fisiología , Neuronas/fisiología , Médula Espinal/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Fibras Autónomas Preganglionares/fisiología , Miembro Posterior/fisiología , Interneuronas/fisiología , Masculino , Bulbo Raquídeo/fisiología , Músculos/fisiología , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-Dawley
6.
J Neurosci ; 37(27): 6558-6574, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28576943

RESUMEN

Expression of the large extracellular glycan, polysialic acid (polySia), is restricted in the adult, to brain regions exhibiting high levels of plasticity or remodeling, including the hippocampus, prefrontal cortex, and the nucleus of the solitary tract (NTS). The NTS, located in the dorsal brainstem, receives constant viscerosensory afferent traffic as well as input from central regions controlling sympathetic nerve activity, respiration, gastrointestinal functions, hormonal release, and behavior. Our aims were to determine the ultrastructural location of polySia in the NTS and the functional effects of enzymatic removal of polySia, both in vitro and in vivo polySia immunoreactivity was found throughout the adult rat NTS. Electron microscopy demonstrated polySia at sites that influence neurotransmission: the extracellular space, fine astrocytic processes, and neuronal terminals. Removing polySia from the NTS had functional consequences. Whole-cell electrophysiological recordings revealed altered intrinsic membrane properties, enhancing voltage-gated K+ currents and increasing intracellular Ca2+ Viscerosensory afferent processing was also disrupted, dampening low-frequency excitatory input and potentiating high-frequency sustained currents at second-order neurons. Removal of polySia in the NTS of anesthetized rats increased sympathetic nerve activity, whereas functionally related enzymes that do not alter polySia expression had little effect. These data indicate that polySia is required for the normal transmission of information through the NTS and that changes in its expression alter sympathetic outflow. polySia is abundant in multiple but discrete brain regions, including sensory nuclei, in both the adult rat and human, where it may regulate neuronal function by mechanisms identified here.SIGNIFICANCE STATEMENT All cells are coated in glycans (sugars) existing predominantly as glycolipids, proteoglycans, or glycoproteins formed by the most complex form of posttranslational modification, glycosylation. How these glycans influence brain function is only now beginning to be elucidated. The adult nucleus of the solitary tract has abundant polysialic acid (polySia) and is a major site of integration, receiving viscerosensory information which controls critical homeostatic functions. Our data reveal that polySia is a determinant of neuronal behavior and excitatory transmission in the nucleus of the solitary tract, regulating sympathetic nerve activity. polySia is abundantly expressed at distinct brain sites in adult, including major sensory nuclei, suggesting that sensory transmission may also be influenced via mechanisms described here. These findings hint at the importance of elucidating how other glycans influence neural function.


Asunto(s)
Vías Aferentes/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Ácidos Siálicos/metabolismo , Núcleo Solitario/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Distribución Tisular
7.
J Pharmacol Exp Ther ; 356(2): 424-33, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26578265

RESUMEN

The ventrolateral medulla contains presympathetic and vagal preganglionic neurons that control vasomotor and cardiac vagal tone, respectively. G protein-coupled receptors influence the activity of these neurons. Gα s activates adenylyl cyclases, which drive cyclic adenosine monophosphate (cAMP)-dependent targets: protein kinase A (PKA), the exchange protein activated by cAMP (EPAC), and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. The aim was to determine the cardiovascular effects of activating and inhibiting these targets at presympathetic and cardiac vagal preganglionic neurons. Urethane-anesthetized rats were instrumented to measure splanchnic sympathetic nerve activity (sSNA), arterial pressure (AP), heart rate (HR), as well as baroreceptor and somatosympathetic reflex function, or were spinally transected and instrumented to measure HR, AP, and cardiac baroreflex function. All drugs were injected bilaterally. In the rostral ventrolateral medulla (RVLM), Sp-cAMPs and 8-Br-cAMP, which activate PKA, as well as 8-pCPT, which activates EPAC, increased sSNA, AP, and HR. Sp-cAMPs also facilitated the reflexes tested. Sp-cAMPs also increased cardiac vagal drive and facilitated cardiac baroreflex sensitivity. Blockade of PKA, using Rp-cAMPs or H-89 in the RVLM, increased sSNA, AP, and HR and increased HR when cardiac vagal preganglionic neurons were targeted. Brefeldin A, which inhibits EPAC, and ZD7288, which inhibits HCN channels, each alone had no effect. Cumulative, sequential blockade of all three inhibitors resulted in sympathoinhibition. The major findings indicate that Gα s-linked receptors in the ventral medulla can be recruited to drive both sympathetic and parasympathetic outflows and that tonically active PKA-dependent signaling contributes to the maintenance of both sympathetic vasomotor and cardiac vagal tone.


Asunto(s)
Presión Sanguínea/fisiología , AMP Cíclico/farmacología , Frecuencia Cardíaca/fisiología , Bulbo Raquídeo/fisiología , Transducción de Señal/fisiología , Nervio Vago/fisiología , Animales , Barorreflejo/efectos de los fármacos , Barorreflejo/fisiología , Presión Sanguínea/efectos de los fármacos , AMP Cíclico/análogos & derivados , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Bulbo Raquídeo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiología , Nervio Vago/efectos de los fármacos
8.
Am J Physiol Regul Integr Comp Physiol ; 307(8): R1025-35, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25100075

RESUMEN

The midbrain superior and inferior colliculi have critical roles in generating coordinated orienting or defensive behavioral responses to environmental stimuli, and it has been proposed that neurons within the colliculi can also generate appropriate cardiovascular and respiratory responses to support such behavioral responses. We have previously shown that activation of neurons within a circumscribed region in the deep layers of the superior colliculus and in the central and external nuclei of the inferior colliculus can evoke a response characterized by intense and highly synchronized bursts of renal sympathetic nerve activity and phrenic nerve activity. In this study, we tested the hypothesis that, under conditions in which collicular neurons are disinhibited, coordinated cardiovascular, somatomotor, and respiratory responses can be evoked by natural environmental stimuli. In response to natural auditory, visual, or somatosensory stimuli, powerful synchronized increases in sympathetic, respiratory, and somatomotor activity were generated following blockade of GABAA receptors in a specific region in the midbrain colliculi of anesthetized rats, but not under control conditions. Such responses still occurred after removal of most of the forebrain, including the amygdala and hypothalamus, indicating that the essential pathways mediating these coordinated responses were located within the brain stem. The temporal relationships between the different outputs suggest that they are driven by a common population of "command neurons" within the colliculi.


Asunto(s)
Estimulación Acústica , Sistema Nervioso Autónomo/fisiología , Estado de Descerebración/fisiopatología , Colículos Inferiores/fisiopatología , Corteza Motora/fisiología , Estimulación Luminosa , Fenómenos Fisiológicos Respiratorios , Colículos Superiores/fisiopatología , Animales , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados Visuales/fisiología , Colículos Inferiores/efectos de los fármacos , Masculino , Microinyecciones , Modelos Animales , Picrotoxina/administración & dosificación , Picrotoxina/farmacología , Ratas , Ratas Sprague-Dawley , Colículos Superiores/efectos de los fármacos , Factores de Tiempo
9.
Brain Struct Funct ; 229(5): 1121-1142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578351

RESUMEN

In mammals, the ventral respiratory column (VRC) plays a pivotal role in integrating neurochemically diverse inputs from brainstem and forebrain regions to generate respiratory motor patterns. VRC microinjection of the neuropeptide galanin has been reported to dampen carbon dioxide (CO2)-mediated chemoreflex responses. Additionally, we previously demonstrated that galaninergic neurons in the retrotrapezoid nucleus (RTN) are implicated in the adaptive response to hypercapnic stimuli, suggesting a link between RTN neuroplasticity and increased neuronal drive to the VRC. VRC neurons express galanin receptor 1, suggesting potential regulatory action by galanin, however, the precise galaninergic chemoreceptor-VRC circuitry remains to be determined. This study aimed to identify sources of galaninergic input to the VRC that contribute to central respiratory chemoreception. We employed a combination of retrograde neuronal tracing, in situ hybridisation and immunohistochemistry to investigate VRC-projecting neurons that synthesise galanin mRNA. In an additional series of experiments, we used acute hypercapnia exposure (10% CO2, 1 h) and c-Fos immunohistochemistry to ascertain which galaninergic nuclei projecting to the VRC are activated. Our findings reveal that a total of 30 brain nuclei and 51 subnuclei project to the VRC, with 12 of these containing galaninergic neurons, including the RTN. Among these galaninergic populations, only a subset of the RTN neurons (approximately 55%) exhibited activation in response to acute hypercapnia. Our findings highlight that the RTN is the likely source of galaninergic transmission to the VRC in response to hypercapnic stimuli.


Asunto(s)
Galanina , Hipercapnia , Neuronas , Animales , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Masculino , Galanina/metabolismo , Neuronas/metabolismo , Dióxido de Carbono/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Centro Respiratorio/metabolismo , Ratas , Células Quimiorreceptoras/metabolismo , Ratas Sprague-Dawley , Tronco Encefálico/metabolismo
10.
Mol Ther Nucleic Acids ; 35(3): 102264, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39108635

RESUMEN

Viral vectors based on recombinant adeno-associated virus (rAAV) have become the most widely used system for therapeutic gene delivery in the central nervous system (CNS). Despite clinical safety and efficacy in neurological applications, a barrier to adoption of the current generation of vectors lies in their limited efficiency, resulting in limited transduction of CNS target cells. To address this limitation, researchers have bioengineered fit-for-purpose AAVs with improved CNS tropism and tissue penetration. While the preclinical assessment of these novel AAVs is primarily conducted in animal models, human induced pluripotent stem cell (hiPSC)-derived organoids offer a unique opportunity to functionally evaluate novel AAV variants in a human context. In this study, we performed a comprehensive and unbiased evaluation of a large number of wild-type and bioengineered AAV capsids for their transduction efficiency in hiPSC-derived brain organoids. We demonstrate that efficient AAV transduction observed in organoids was recapitulated in vivo in both mouse and non-human primate models after cerebrospinal fluid (CSF) delivery. In summary, our study showcases the use of brain organoid systems for the pre-screening of novel AAV vectors. Additionally, we report data for novel AAV variants that exhibit improved CNS transduction efficiency when delivered via the CSF in in vivo preclinical models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA